Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 63
Filter
1.
Trends Parasitol ; 2024 May 16.
Article in English | MEDLINE | ID: mdl-38760258

ABSTRACT

Insecticide resistance in malaria vector populations poses a major threat to malaria control, which relies largely on insecticidal interventions. Contemporary vector-control strategies focus on combatting resistance using multiple insecticides with differing modes of action within the mosquito. However, diverse genetic resistance mechanisms are present in vector populations, and continue to evolve. Knowledge of the spatial distribution of these genetic mechanisms, and how they impact the efficacy of different insecticidal products, is critical to inform intervention deployment decisions. We developed a catalogue of genetic-resistance mechanisms in African malaria vectors that could guide molecular surveillance. We highlight situations where intervention deployment has led to resistance evolution and spread, and identify challenges in understanding and mitigating the epidemiological impacts of resistance.

2.
BMC Genomics ; 25(1): 348, 2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38582836

ABSTRACT

BACKGROUND: Insecticide resistance (IR) is one of the major threats to malaria vector control programs in endemic countries. However, the mechanisms underlying IR are poorly understood. Thus, investigating gene expression patterns related to IR can offer important insights into the molecular basis of IR in mosquitoes. In this study, RNA-Seq was used to characterize gene expression in Anopheles gambiae surviving exposure to pyrethroids (deltamethrin, alphacypermethrin) and an organophosphate (pirimiphos-methyl). RESULTS: Larvae of An. gambiae s.s. collected from Bassila and Djougou in Benin were reared to adulthood and phenotyped for IR using a modified CDC intensity bottle bioassay. The results showed that mosquitoes from Djougou were more resistant to pyrethroids (5X deltamethrin: 51.7% mortality; 2X alphacypermethrin: 47.4%) than Bassila (1X deltamethrin: 70.7%; 1X alphacypermethrin: 77.7%), while the latter were more resistant to pirimiphos-methyl (1.5X: 48.3% in Bassila and 1X: 21.5% in Djougou). RNA-seq was then conducted on resistant mosquitoes, non-exposed mosquitoes from the same locations and the laboratory-susceptible An. gambiae s.s. Kisumu strain. The results showed overexpression of detoxification genes, including cytochrome P450s (CYP12F2, CYP12F3, CYP4H15, CYP4H17, CYP6Z3, CYP9K1, CYP4G16, and CYP4D17), carboxylesterase genes (COEJHE5E, COE22933) and glutathione S-transferases (GSTE2 and GSTMS3) in all three resistant mosquito groups analyzed. Genes encoding cuticular proteins (CPR130, CPR10, CPR15, CPR16, CPR127, CPAP3-C, CPAP3-B, and CPR76) were also overexpressed in all the resistant groups, indicating their potential role in cross resistance in An. gambiae. Salivary gland protein genes related to 'salivary cysteine-rich peptide' and 'salivary secreted mucin 3' were also over-expressed and shared across all resistant groups. CONCLUSION: Our results suggest that in addition to metabolic enzymes, cuticular and salivary gland proteins could play an important role in cross-resistance to multiple classes of insecticides in Benin. These genes warrant further investigation to validate their functional role in An. gambiae resistance to insecticides.


Subject(s)
Anopheles , Insecticides , Malaria , Nitriles , Pyrethrins , Animals , Insecticides/pharmacology , Anopheles/genetics , Benin , Organophosphates/pharmacology , Mosquito Vectors , Pyrethrins/pharmacology , Insecticide Resistance/genetics , Gene Expression Profiling
3.
Malar J ; 23(1): 122, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38671462

ABSTRACT

BACKGROUND: Anopheles coluzzii is a primary vector of malaria found in West and Central Africa, but its presence has hitherto never been documented in Kenya. A thorough understanding of vector bionomics is important as it enables the implementation of targeted and effective vector control interventions. Malaria vector surveillance efforts in the country have tended to focus on historically known primary vectors. The current study sought to determine the taxonomic status of samples collected from five different malaria epidemiological zones in Kenya as well as describe the population genetic structure and insecticide resistance profiles in relation to other An. coluzzii populations. METHODS: Mosquitoes were sampled as larvae from Busia, Kwale, Turkana, Kirinyaga and Kiambu counties, representing the range of malaria endemicities in Kenya, in 2019 and 2021 and emergent adults analysed using Whole Genome Sequencing (WGS) data processed in accordance with the Anopheles gambiae 1000 Genomes Project phase 3. Where available, historical samples from the same sites were included for WGS. Comparisons were made with An. coluzzii cohorts from West and Central Africa. RESULTS: This study reports the detection of An. coluzzii for the first time in Kenya. The species was detected in Turkana County across all three time points from which samples were analyzed and its presence confirmed through taxonomic analysis. Additionally, there was a lack of strong population genetic differentiation between An. coluzzii from Kenya and those from the more northerly regions of West and Central Africa, suggesting they represent a connected extension to the known species range. Mutations associated with target-site resistance to DDT and pyrethroids and metabolic resistance to DDT were found at high frequencies up to 64%. The profile and frequencies of the variants observed were similar to An. coluzzii from West and Central Africa but the ace-1 mutation linked to organophosphate and carbamate resistance present in An. coluzzii from coastal West Africa was absent in Kenya. CONCLUSIONS: These findings emphasize the need for the incorporation of genomics in comprehensive and routine vector surveillance to inform on the range of malaria vector species, and their insecticide resistance status to inform the choice of effective vector control approaches.


Subject(s)
Anopheles , Insecticide Resistance , Mosquito Vectors , Animals , Anopheles/genetics , Anopheles/drug effects , Anopheles/classification , Insecticide Resistance/genetics , Kenya , Mosquito Vectors/genetics , Mosquito Vectors/drug effects , Genetics, Population , Africa, Western , Insecticides/pharmacology , Africa, Central , Female
4.
BMC Genomics ; 25(1): 313, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38532318

ABSTRACT

BACKGROUND: Effective vector control is key to malaria prevention. However, this is now compromised by increased insecticide resistance due to continued reliance on insecticide-based control interventions. In Kenya, we have observed heterogenous resistance to pyrethroids and organophosphates in Anopheles arabiensis which is one of the most widespread malaria vectors in the country. We investigated the gene expression profiles of insecticide resistant An. arabiensis populations from Migori and Siaya counties in Western Kenya using RNA-Sequencing. Centers for Disease Control and Prevention (CDC) bottle assays were conducted using deltamethrin (DELTA), alphacypermethrin (ACYP) and pirimiphos-methyl (PMM) to determine the resistance status in both sites. RESULTS: Mosquitoes from Migori had average mortalities of 91%, 92% and 58% while those from Siaya had 85%, 86%, and 30% when exposed to DELTA, ACYP and PMM, respectively. RNA-Seq analysis was done on pools of mosquitoes which survived exposure ('resistant'), mosquitoes that were not exposed, and the insecticide-susceptible An. arabiensis Dongola strain. Gene expression profiles of resistant mosquitoes from both Migori and Siaya showed an overexpression mainly of salivary gland proteins belonging to both the short and long form D7 genes, and cuticular proteins (including CPR9, CPR10, CPR15, CPR16). Additionally, the overexpression of detoxification genes including cytochrome P450s (CYP9M1, CYP325H1, CYP4C27, CYP9L1 and CYP307A1), 2 carboxylesterases and a glutathione-S-transferase (GSTE4) were also shared between DELTA, ACYP, and PMM survivors, pointing to potential contribution to cross resistance to both pyrethroid and organophosphate insecticides. CONCLUSION: This study provides novel insights into the molecular basis of insecticide resistance in An. arabiensis in Western Kenya and suggests that salivary gland proteins and cuticular proteins are associated with resistance to multiple classes of insecticides.


Subject(s)
Anopheles , Insecticides , Malaria , Organothiophosphorus Compounds , Pyrethrins , Animals , Insecticides/pharmacology , Insecticide Resistance/genetics , Anopheles/genetics , Kenya , Mosquito Vectors , Glutathione Transferase , Gene Expression Profiling , Salivary Proteins and Peptides/genetics , Salivary Glands
5.
Malar J ; 23(1): 81, 2024 Mar 16.
Article in English | MEDLINE | ID: mdl-38493098

ABSTRACT

BACKGROUND: Vector surveillance is among the World Health Organization global vector control response (2017-2030) pillars. Human landing catches are a gold standard but difficult to implement and potentially expose collectors to malaria infection. Other methods like light traps, pyrethrum spray catches and aspiration are less expensive and less risky to collectors. METHODS: Three mosquito sampling methods (UV light traps, CDC light traps and Prokopack aspiration) were evaluated against human landing catches (HLC) in two villages of Rarieda sub-county, Siaya County, Kenya. UV-LTs, CDC-LTs and HLCs were conducted hourly between 17:00 and 07:00. Aspiration was done indoors and outdoors between 07:00 and 11:00 a.m. Analyses of mosquito densities, species abundance and sporozoite infectivity were performed across all sampling methods. Species identification PCR and ELISAs were done for Anopheles gambiae and Anopheles funestus complexes and data analysis was done in R. RESULTS: Anopheles mosquitoes sampled from 608 trapping efforts were 5,370 constituting 70.3% Anopheles funestus sensu lato (s.l.), 19.7% Anopheles coustani and 7.2% An. gambiae s.l. 93.8% of An. funestus s.l. were An. funestus sensu stricto (s.s.) and 97.8% of An. gambiae s.l. were Anopheles arabiensis. Only An. funestus were sporozoite positive with 3.1% infection prevalence. Indoors, aspiration captured higher An. funestus (mean = 6.74; RR = 8.83, P < 0.001) then UV-LT (mean = 3.70; RR = 3.97, P < 0.001) and CDC-LT (mean = 1.74; RR = 1.89, P = 0.03) compared to HLC. UV-LT and CDC-LT indoors captured averagely 0.18 An. arabiensis RR = 5.75, P = 0.028 and RR = 5.87, P = 0.028 respectively. Outdoors, UV-LT collected significantly higher Anopheles mosquitoes compared to HLC (An. funestus: RR = 5.18, P < 0.001; An. arabiensis: RR = 15.64, P = 0.009; An. coustani: RR = 11.65, P < 0.001). Anopheles funestus hourly biting indoors in UV-LT and CDC-LT indicated different peaks compared to HLC. CONCLUSIONS: Anopheles funestus remains the predominant mosquito species. More mosquitoes were collected using aspiration, CDC-LTs and UV-LTs indoors and UV-LTs and CD-LTs outdoors compared to HLCs. UV-LTs collected more mosquitoes than CDC-LTs. The varied trends observed at different times of the night suggest that these methods collect mosquitoes with diverse activities and care must be taken when interpreting the results.


Subject(s)
Anopheles , Malaria , Animals , Humans , Anopheles/physiology , Kenya/epidemiology , Mosquito Vectors/physiology , Feeding Behavior , Sporozoites , Mosquito Control/methods
6.
Malar J ; 23(1): 66, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38438933

ABSTRACT

BACKGROUND: Insecticide-treated nets (ITNs) contributed significantly to the decline in malaria since 2000. Their protective efficacy depends not only on access, use, and net integrity, but also location of people within the home environment and mosquito biting profiles. Anopheline mosquito biting and human location data were integrated to identify potential gaps in protection and better understand malaria transmission dynamics in Busia County, western Kenya. METHODS: Direct observation of human activities and human landing catches (HLC) were performed hourly between 1700 to 0700 h. Household members were recorded as home or away; and, if at home, as indoors/outdoors, awake/asleep, and under a net or not. Aggregated data was analysed by weighting hourly anopheline biting activity with human location. Standard indicators of human-vector interaction were calculated using a Microsoft Excel template. RESULTS: There was no significant difference between indoor and outdoor biting for Anopheles gambiae sensu lato (s.l.) (RR = 0.82; 95% CI 0.65-1.03); significantly fewer Anopheles funestus were captured outdoors than indoors (RR = 0.41; 95% CI 0.25-0.66). Biting peaked before dawn and extended into early morning hours when people began to awake and perform routine activities, between 0400-0700 h for An. gambiae and 0300-0700 h for An. funestus. The study population away from home peaked at 1700-1800 h (58%), gradually decreased and remained constant at 10% throughout the night, before rising again to 40% by 0600-0700 h. When accounting for resident location, nearly all bites within the peri-domestic space (defined as inside household structures and surrounding outdoor spaces) occurred indoors for unprotected people (98%). Using an ITN while sleeping was estimated to prevent 79% and 82% of bites for An. gambiae and An. funestus, respectively. For an ITN user, most remaining exposure to bites occurred indoors in the hours before bed and early morning. CONCLUSION: While use of an ITN was estimated to prevent most vector bites in this context, results suggest gaps in protection, particularly in the early hours of the morning when biting peaks and many people are awake and active. Assessment of additional human exposure points, including outside of the peri-domestic setting, are needed to guide supplementary interventions for transmission reduction.


Subject(s)
Anopheles , Insecticides , Malaria , Animals , Humans , Kenya , Mosquito Vectors , Malaria/prevention & control
7.
Res Sq ; 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38410447

ABSTRACT

Background: Anopheles coluzzii is a primary vector of malaria found in West and Central Africa, but its presence has hitherto never been documented in Kenya. A thorough understanding of vector bionomics is important as it enables the implementation of targeted and effective vector control interventions. Malaria vector surveillance efforts in the country have tended to focus on historically known primary vectors. In the current study, we sought to determine the taxonomic status of samples collected from five different malaria epidemiological zones in Kenya as well asdescribe the population genetic structure and insecticide resistance profiles in relation to other An. coluzzi populations. Methods: Mosquitoes were sampled as larvae from Busia, Kwale, Turkana, Kirinyaga and Kiambu counties, representing the range of malaria endemicities in Kenya, in 2019 and 2021 and emergent adults analysed using Whole Genome Sequencing data processed in accordance with the Anopheles gambiae 1000 Genomes Project phase 3. Where available, historical samples from the same sites were included for WGS. Results: This study reports the detection of Anopheles coluzzii for the first time in Kenya. The species was detected in Turkana County across all three time points sampled and its presence confirmed through taxonomic analysis. Additionally, we found a lack of strong population genetic differentiation between An. coluzzii from Kenya and those from the more northerly regions of West and Central Africa, suggesting they represent a connected extension to the known species range. Mutations associated with target-site resistance to DDT and pyrethroids and metabolic resistance to DDT were found at high frequencies of ~60%. The profile and frequencies of the variants observed were similar to An. coluzzii from West and Central Africa but the ace-1 mutation linked to organophosphate and carbamate resistance present in An. coluzzii from coastal West Africa was absent in Kenya. Conclusions: These findings emphasise the need for the incorporation of genomics in comprehensive and routine vector surveillance to inform on the range of malaria vector species, and their insecticide resistance status to inform the choice of effective vector control approaches.

8.
Malariaworld J ; 15: 1, 2024.
Article in English | MEDLINE | ID: mdl-38322708

ABSTRACT

Introduction: Human habitats remain the main point of human-vector interaction leading to malaria transmission despite the sustained use of insecticide-treated nets and indoor residual spraying. Simple structural modifications involving screening of doors, windows and eaves have great potential for reducing indoor entry of mosquitoes. Moreover, insecticide treatment of the screen material may provide additional benefit in mosquito population reduction. Materials and Methods: Four huts, each constructed inside a semi-field structure, were used in the study. Two had untreated eave and door screens and screened air cavities in place of windows (experiment 1) or were similar but with the eave screens treated with Actellic® 300CS insecticide (experiment 2). The other two huts remained unscreened throughout the study. Two hundred, 3-day old adults of F1 generation Anopheles funestus collected by aspiration or F0 reared from An. arabiensis larvae or An. arabiensis (Dongola strain) were released in each semi-field structure at dusk and recaptured the following morning. A single volunteer slept in each hut under an untreated bednet each night of the study. Recaptured mosquitoes were counted and recorded by location, either indoor or outdoor of each hut in the different semi-field structures. Results: Based on modelled estimates, significantly fewer, 10% An. arabiensis from Ahero, 11% An. arabiensis Dongola strain and 10% An. funestus from Siaya were observed inside modified huts compared to unmodified ones. Treating of eave screen material with Actellic® 300CS significantly reduced indoor numbers of An. arabiensis from Ahero, to nearly 0%, and An. arabiensis Dongola strain, to 3%, compared to huts with untreated eave screens, while eliminating An. funestus indoors. These modifications cost US$180 /structure and have been observed to last more than 15 years in a different location. Conclusions: Eave, door and window screening are effective ways of reducing mosquito entry into houses. Additionally, treatment of eave screen material with an effective insecticide further reduces the Anopheles population in and around the screened huts under semi-field conditions and could greatly complement existing vector control efforts.

9.
Parasit Vectors ; 17(1): 6, 2024 Jan 04.
Article in English | MEDLINE | ID: mdl-38178213

ABSTRACT

BACKGROUND: Spatial repellents (SR) may complement current vector control tools and provide additional coverage when people are not under their bednets or are outdoors. Here we assessed the efficacy of a metofluthrin-based SR in reducing exposure to pyrethroid-resistant Anopheles funestus in Siaya County, western Kenya. METHODS: Metofluthrin was vaporized using an emanator configured to a liquid petroleum gas (LPG) canister, placed inside experimental huts (phase 1) or outdoors (phase 2), and evaluated for reductions in human landing rate, density, knockdown and mortality rates of An. funestus, which are present in high density in the area. To demonstrate the mosquito recruiting effect of LPG, a hut with only an LPG cooker but no metofluthrin was added as a comparator and compared with an LPG cooker burning alongside the emanator and a third hut with no LPG cooker as control. Phase 2 evaluated the protective range of the SR product while emanating from the centre of a team of mosquito collectors sitting outdoors in north, south, east and west directions at 5, 10 and 20 feet from the emanating device. RESULTS: Combustion of LPG with a cook stove increased the density of An. funestus indoors by 51% over controls with no cook stove. In contrast, huts with metofluthrin vaporized with LPG combustion had lower indoor density of An. funestus (99.3% less than controls), with knockdown and mortality rates of 95.5 and 87.7%, respectively, in the mosquitoes collected in the treated huts. In the outdoor study (phase 2), the outdoor landing rate was significantly lower at 5 and 10 feet than at 20 feet from the emanator. CONCLUSIONS: Vaporized metofluthrin almost completely prevented An. funestus landing indoors and led to 10 times lower landing rates within 10 feet of the emanator outdoors, the first product to demonstrate such potential. Cooking with LPG inside the house could increase exposure to Anopheles mosquito bites, but the use of the metofluthrin canister eliminates this risk.


Subject(s)
Anopheles , Insect Repellents , Malaria , Pyrethrins , Animals , Humans , Pyrethrins/pharmacology , Mosquito Control , Mosquito Vectors , Kenya , Insect Repellents/pharmacology
10.
Malar J ; 23(1): 8, 2024 Jan 04.
Article in English | MEDLINE | ID: mdl-38178145

ABSTRACT

Africa and the United States are both large, heterogeneous geographies with a diverse range of ecologies, climates and mosquito species diversity which contribute to disease transmission and nuisance biting. In the United States, mosquito control is nationally, and regionally coordinated and in so much as the Centers for Disease Control (CDC) provides guidance, the Environmental Protection Agency (EPA) provides pesticide registration, and the states provide legal authority and oversight, the implementation is usually decentralized to the state, county, or city level. Mosquito control operations are organized, in most instances, into fully independent mosquito abatement districts, public works departments, local health departments. In some cases, municipalities engage independent private contractors to undertake mosquito control within their jurisdictions. In sub-Saharan Africa (SSA), where most vector-borne disease endemic countries lie, mosquito control is organized centrally at the national level. In this model, the disease control programmes (national malaria control programmes or national malaria elimination programmes (NMCP/NMEP)) are embedded within the central governments' ministries of health (MoHs) and drive vector control policy development and implementation. Because of the high disease burden and limited resources, the primary endpoint of mosquito control in these settings is reduction of mosquito borne diseases, primarily, malaria. In the United States, however, the endpoint is mosquito control, therefore, significant (or even greater) emphasis is laid on nuisance mosquitoes as much as disease vectors. The authors detail experiences and learnings gathered by the delegation of African vector control professionals that participated in a formal exchange programme initiated by the Pan-African Mosquito Control Association (PAMCA), the University of Notre Dame, and members of the American Mosquito Control Association (AMCA), in the United States between the year 2021 and 2022. The authors highlight the key components of mosquito control operations in the United States and compare them to mosquito control programmes in SSA countries endemic for vector-borne diseases, deriving important lessons that could be useful for vector control in SSA.


Subject(s)
Malaria , Mosquito Control , Animals , United States , Malaria/epidemiology , Africa South of the Sahara , Ecology , Disease Vectors , Mosquito Vectors
11.
Malar J ; 22(1): 366, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38037026

ABSTRACT

BACKGROUND: Children in Kenya spend a substantial amount of time at school, including at dawn and dusk when mosquitoes are active. With changing vector behaviour towards early morning biting, it is important to determine whether there is an additional risk of transmission in schools. This study sought to understand whether late morning biting by Anopheles funestus, previously documented in households in western Kenya, was replicated in schools. METHODS: From the 4th to the 6th of August 2023, human landing collections were conducted hourly in four schools in Alego Usonga sub-County, Siaya County. The collections were conducted in and outside five classrooms in each school and ran for 17 h, starting at 18:00 until 11:00 h the next morning. RESULTS: Anopheles funestus was the predominant species collected, forming 93.2% (N = 727) of the entire collection, with peak landing between 06:00 and 07:00 h and continuing until 11:00 h. More than half of the collected An. funestus were either fed or gravid, potentially indicative of multiple bloodmeals within each gonotrophic cycle, and had a sporozoite rate of 2.05%. CONCLUSION: School children spend up to 10 h of their daytime in schools, reporting between 06:00 and 07:00 h and staying in school until as late as 17:00 h, meaning that they receive potentially infectious mosquito bites during the morning hours in these settings. There is a need to consider vector control approaches targeting schools and other peridomestic spaces in the morning hours when An. funestus is active.


Subject(s)
Anopheles , Bites and Stings , Malaria , Animals , Child , Humans , Malaria/prevention & control , Kenya , Feeding Behavior , Risk Factors , Mosquito Vectors
12.
Emerg Infect Dis ; 29(12): 2498-2508, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37966106

ABSTRACT

The Anopheles stephensi mosquito is an invasive malaria vector recently reported in Djibouti, Ethiopia, Sudan, Somalia, Nigeria, and Ghana. The World Health Organization has called on countries in Africa to increase surveillance efforts to detect and report this vector and institute appropriate and effective control mechanisms. In Kenya, the Division of National Malaria Program conducted entomological surveillance in counties at risk for An. stephensi mosquito invasion. In addition, the Kenya Medical Research Institute conducted molecular surveillance of all sampled Anopheles mosquitoes from other studies to identify An. stephensi mosquitoes. We report the detection and confirmation of An. stephensi mosquitoes in Marsabit and Turkana Counties by using endpoint PCR and morphological and sequence identification. We demonstrate the urgent need for intensified entomological surveillance in all areas at risk for An. stephensi mosquito invasion, to clarify its occurrence and distribution and develop tailored approaches to prevent further spread.


Subject(s)
Anopheles , Biomedical Research , Malaria , Animals , Kenya/epidemiology , Malaria/epidemiology , Malaria/prevention & control , Mosquito Vectors
13.
Parasit Vectors ; 16(1): 376, 2023 Oct 21.
Article in English | MEDLINE | ID: mdl-37864217

ABSTRACT

BACKGROUND: Designing, implementing, and upscaling of effective malaria vector control strategies necessitates an understanding of when and where transmission occurs. This study assessed the biting patterns of potentially infectious malaria vectors at various hours, locations, and associated human behaviors in different ecological settings in western Kenya. METHODS: Hourly indoor and outdoor catches of human-biting mosquitoes were sampled from 19:00 to 07:00 for four consecutive nights in four houses per village. The human behavior study was conducted via questionnaire surveys and observations. Species within the Anopheles gambiae complex and Anopheles funestus group were distinguished by polymerase chain reaction (PCR) and the presence of Plasmodium falciparum circumsporozoite proteins (CSP) determined by enzyme-linked immunosorbent assay (ELISA). RESULTS: Altogether, 2037 adult female anophelines were collected comprising the An. funestus group (76.7%), An. gambiae sensu lato (22.8%), and Anopheles coustani (0.5%). PCR results revealed that Anopheles arabiensis constituted 80.5% and 79% of the An. gambiae s.l. samples analyzed from the lowland sites (Ahero and Kisian, respectively). Anopheles gambiae sensu stricto (hereafter An. gambiae) (98.1%) was the dominant species in the highland site (Kimaeti). All the An. funestus s.l. analyzed belonged to An. funestus s.s. (hereafter An. funestus). Indoor biting densities of An. gambiae s.l. and An. funestus exceeded the outdoor biting densities in all sites. The peak biting occurred in early morning between 04:30 and 06:30 in the lowlands for An. funestus both indoors and outdoors. In the highlands, the peak biting of An. gambiae occurred between 01:00 and 02:00 indoors. Over 50% of the study population stayed outdoors from 18:00 to 22:00 and woke up at 05:00, coinciding with the times when the highest numbers of vectors were collected. The sporozoite rate was higher in vectors collected outdoors, with An. funestus being the main malaria vector in the lowlands and An. gambiae in the highlands. CONCLUSION: This study shows heterogeneity of anopheline distribution, high outdoor malaria transmission, and early morning peak biting activity of An. funestus when humans are not protected by bednets in the lowland sites. Additional vector control efforts targeting the behaviors of these vectors, such as the use of non-pyrethroids for indoor residual spraying and spatial repellents outdoors, are needed.


Subject(s)
Anopheles , Bites and Stings , Malaria , Animals , Humans , Female , Malaria/epidemiology , Malaria/prevention & control , Ecosystem , Mosquito Vectors , Kenya/epidemiology , Feeding Behavior
15.
Parasit Vectors ; 16(1): 335, 2023 Sep 25.
Article in English | MEDLINE | ID: mdl-37749577

ABSTRACT

BACKGROUND: The demonstration that the recently discovered Anopheles symbiont Microsporidia MB blocks malaria transmission in Anopheles arabiensis and undergoes vertical and horizontal transmission suggests that it is a promising candidate for the development of a symbiont-based malaria transmission-blocking strategy. The infection prevalence and characteristics of Microsporidia MB in Anopheles gambiae sensu stricto (s.s.), another primary vector species of malaria in Kenya, were investigated. METHODS: Field-collected females were confirmed to be Microsporidia MB-positive after oviposition. Egg counts of Microsporidia MB-infected and non-infected individuals were used to infer the effects of Microsporidia MB on fecundity. The time to pupation, adult sex ratio and survival were used to determine if Microsporidia MB infection has similar characteristics in the host mosquitoes An. gambiae and An. arabiensis. The intensity of Microsporidia MB infection in tissues of the midgut and gonads, and in carcasses, was determined by quantitative polymerase chain reaction. To investigate horizontal transmission, virgin males and females that were either Microsporidia MB-infected or non-infected were placed in standard cages for 48 h and allowed to mate; transmission was confirmed by quantitative polymerase chain reaction targeting Microsporidia MB genes. RESULTS: Microsporidia MB was found to naturally occur at a low prevalence in An. gambiae s.s. collected in western Kenya. Microsporidia MB shortened the development time from larva to pupa, but other fitness parameters such as fecundity, sex ratio, and adult survival did not differ between Microsporidia MB-infected and non-infected hosts. Microsporidia MB intensities were high in the male gonadal tissues. Transmission experiments indicated that Microsporidia MB undergoes both maternal and horizontal transmission in An. gambiae s.s. CONCLUSIONS: The findings that Microsporidia MB naturally infects, undergoes maternal and horizontal transmission, and is avirulent in An. gambiae s.s. indicate that many of the characteristics of its infection in An. arabiensis hold true for the former. The results of the present study indicate that Microsporidia MB could be developed as a tool for the transmission-blocking of malaria across different Anopheles species.


Subject(s)
Anopheles , Malaria , Microsporidia , Humans , Animals , Female , Male , Anopheles/genetics , Mosquito Vectors , Insect Vectors/genetics
16.
J Med Entomol ; 60(5): 1030-1037, 2023 09 12.
Article in English | MEDLINE | ID: mdl-37478413

ABSTRACT

The massive and inappropriate use of synthetic insecticides is causing significant and increasing environmental disruption. Therefore, developing effective natural mosquitocidal compounds could be an alternative tool for malarial vector control. The present study investigates the larvicidal and adulticidal effect of methanol and acetone extracts of leaves from Lippia chevalieri, Lippia multiflora, Cymbopogon schoenanthus, and Lantana camara against Anopheles arabiensis, to control the most widespread vector transmitting malaria in sub-Saharan. Africa. Extracts were evaluated following WHO modified test procedure against third- to fourth-instar larvae and, non-blood-fed females from 3- to 5-day-old field populations of An. arabiensis under laboratory conditions using WHO larval and CDC bottle bioassays, respectively. Mortality was recorded after 24-h exposure and several compounds were identified in the extracts. The methanolic and acetonic extracts of L. camara were effective against larvae showing lethal concentrations to 50% (LC50) of the population, at 89.48 and 58.72 ppm, respectively. The acetonic extracts of C. schoenanthus and L. chevalieri showed higher toxicities LC50s of 0.16% and 0.22% against female adults, respectively. The methanolic extracts of L. multiflora and L. chevalieri LC50s were effective at 0.17% and 0.27%, respectively, against female adults. These results indicate that the plant extracts tested may represent effective means to control An. arabiensis when used to treat the surface of the marshes.


Subject(s)
Anopheles , Culex , Insecticides , Female , Animals , Methanol/pharmacology , Acetone/pharmacology , Kenya , Mosquito Vectors , Larva , Plant Leaves , Plant Extracts/pharmacology , Insecticides/pharmacology
17.
Malar J ; 22(1): 203, 2023 Jul 03.
Article in English | MEDLINE | ID: mdl-37400805

ABSTRACT

BACKGROUND: Entomological surveillance is traditionally conducted by supervised teams of trained technicians. However, it is expensive and limiting in the number of sites visited. Surveillance through community-based collectors (CBC) may be more cost-effective and sustainable for longitudinal entomological monitoring. This study evaluated the efficiency of CBCs in monitoring mosquito densities compared to quality-assured sampling conducted by experienced entomology technicians. METHODS: Entomological surveillance employing CBCs was conducted in eighteen clusters of villages in western Kenya using indoor and outdoor CDC light traps and indoor Prokopack aspiration. Sixty houses in each cluster were enrolled and sampled once every month. Collected mosquitoes were initially identified to the genus level by CBCs, preserved in 70% ethanol and transferred to the laboratory every 2 weeks. Parallel, collections by experienced entomology field technicians were conducted monthly by indoor and outdoor CDC light traps and indoor Prokopack aspiration and served as a quality assurance of the CBCs. RESULTS: Per collection, the CBCs collected 80% fewer Anopheles gambiae sensu lato (s.l.) [RR = 0.2; (95% CI 0.14-0.27)] and Anopheles coustani [RR = 0.2; (95% CI 0.06-0.53)] and 90% fewer Anopheles funestus [RR = 0.1; (95% CI 0.08-0.19)] by CDC light traps compared to the quality assured (QA) entomology teams. Significant positive correlations were however observed between the monthly collections by CBCs and QA teams for both An. gambiae and An. funestus. In paired identifications of pooled mosquitoes, the CBCs identified 4.3 times more Anopheles compared to experienced technicians. The cost per person-night was lower in the community-based sampling at $9.1 compared to $89.3 by QA per collection effort. CONCLUSION: Unsupervised community-based mosquito surveillance collected substantially fewer mosquitoes per trap-night compared to quality-assured collection by experienced field teams, while consistently overestimating the number of Anopheles mosquitoes during identification. However, the numbers collected were significantly correlated between the CBCs and the QA teams suggesting that trends observed by CBCs and QA teams were similar. Further studies are needed to evaluate whether adopting low-cost, devolved supervision with spot checks, coupled with remedial training of the CBCs, can improve community-based collections to be considered a cost-effective alternative to surveillance conducted by experienced entomological technicians.


Subject(s)
Anopheles , Malaria , Animals , Humans , Kenya/epidemiology , Mosquito Vectors , Feeding Behavior , Mosquito Control
18.
PLoS One ; 18(6): e0286679, 2023.
Article in English | MEDLINE | ID: mdl-37279239

ABSTRACT

Attractive Targeted Sugar Baits (ATSB) have been demonstrated to result in significant reductions in malaria vector numbers in areas of scarce vegetation cover such as in Mali and Israel, but it is not clear whether such an effect can be replicated in environments where mosquitoes have a wide range of options for sugar resources. The current study evaluated the attractiveness of the predominant flowering plants of Asembo Siaya County, western Kenya in comparison to an ATSB developed by Westham Co. Sixteen of the most common flowering plants in the study area were selected and evaluated for relative attractiveness to malaria vectors in semi-field structures. Six of the most attractive flowers were compared to determine the most attractive to local Anopheles mosquitoes. The most attractive plant was then compared to different versions of ATSB. In total, 56,600 Anopheles mosquitoes were released in the semi-field structures. From these, 5150 mosquitoes (2621 males and 2529 females) of An. arabiensis, An. funestus and An. gambiae were recaptured on the attractancy traps. Mangifera indica was the most attractive sugar source for all three species while Hyptis suaveolens and Tephrosia vogelii were the least attractive plants to the mosquitoes. Overall, ATSB version 1.2 was significantly more attractive compared to both ATSB version 1.1 and Mangifera indica. Mosquitoes were differentially attracted to various natural plants in western Kenya and ATSB. The observation that ATSB v1.2 was more attractive to local Anopheles mosquitoes than the most attractive natural sugar source indicates that this product may be able to compete with natural sugar sources in western Kenya and suggests this product may have the potential to impact mosquito populations in the field.


Subject(s)
Anopheles , Insecticides , Magnoliopsida , Malaria , Male , Animals , Female , Sugars , Kenya , Mosquito Control , Mosquito Vectors , Carbohydrates , Flowers
19.
Res Sq ; 2023 Apr 10.
Article in English | MEDLINE | ID: mdl-37090522

ABSTRACT

Background: Designing, implementing, and upscaling effective malaria vector control strategies necessitates understanding of when and where transmission occurs. This study assessed the biting patterns of potentially infectious malaria vectors at various hours, locations, and human behavior in different ecological settings in western Kenya. Methods: Hourly indoor and outdoor catches of human-biting mosquitoes were sampled from 1900 to 0700 hours for four consecutive nights in four houses per village using human landing collection method. The nocturnal biting activities of each Anopheles species were expressed as the mean number of mosquitoes landing per person per hour. The human behavior study was conducted via observations and questionnaire surveys. Species within Anopheles gambiae and Anopheles funestus complexes were differentiated by polymerase chain reaction (PCR) and the presence of Plasmodium falciparumcircumsporozoite proteins (CSP) determined by enzyme-linked immunosorbent assay (ELISA). Results: Altogether, a total of 2,037 adult female Anophelines were collected comprising of An. funestus s.l. (76.7%), An.gambiae s.l.(22.8%) and Anopheles coustani (0.5%). Overall, Anopheles funestus was the predominant species collected in Ahero (96.7%) while An. gambiae s.l was dominant in Kisian (86.6%) and Kimaeti (100%) collections. PCR results revealed that An. arabiensis constituted 80.5% and 79% of the An.gambiae s.l samples analysed from Ahero and Kisian respectively. An. gambiae s.s (hereafter An.gambiae) (98.1%) was the dominant species collected in Kimaeti. All the An. funestus s.l samples analysed belonged to An. funestus s.s (hereafter An. funestus). Indoor biting densities of Anopheles gambiae and An. funestus exceeded the outdoor biting densities in all sites. The peak biting occurred early morning between 0430-0630 hours in the lowlands for An. funestus both indoors and outdoors. In the highlands (Kimaeti), the peak biting of An.gambiae occurred between 0100-0200 hours indoors. Over 50% of the study population stayed outdoors from 1800 to 2200 hours and woke up at 0500 hours coinciding with the times highest numbers of vectors were collected. The sporozoite rate was higher in vectors collected outdoors, with An. funestus being the main malaria vector in the lowlands and An. gambiaein the highland. Conclusion: The study shows heterogeneity of Anophelines distribution, high outdoor malaria transmission, and peak biting activity by An. funestus (early morning) when humans are not protected by bed nets in the lowland sites. Additional vector control efforts targeting the behaviors of these vectors i.e using non-pyrethroids-based indoor residual spraying and spatial repellents outdoors are needed.

20.
PLOS Glob Public Health ; 3(4): e0001505, 2023.
Article in English | MEDLINE | ID: mdl-37068071

ABSTRACT

Progress in malaria control has stalled over the recent years. Knowledge on main drivers of transmission explaining small-scale variation in prevalence can inform targeted control measures. We collected finger-prick blood samples from 3061 individuals irrespective of clinical symptoms in 20 clusters in Busia in western Kenya and screened for Plasmodium falciparum parasites using qPCR and microscopy. Clusters spanned an altitude range of 207 meters (1077-1284 m). We mapped potential mosquito larval habitats and determined their number within 250 m of a household and distances to households using ArcMap. Across all clusters, P. falciparum parasites were detected in 49.8% (1524/3061) of individuals by qPCR and 19.5% (596/3061) by microscopy. Across the clusters, prevalence ranged from 26% to 70% by qPCR. Three to 34 larval habitats per cluster and 0-17 habitats within a 250m radius around households were observed. Using a generalized linear mixed effect model (GLMM), a 5% decrease in the odds of getting infected per each 10m increase in altitude was observed, while the number of larval habitats and their proximity to households were not statistically significant predictors for prevalence. Kitchen located indoors, open eaves, a lower level of education of the household head, older age, and being male were significantly associated with higher prevalence. Pronounced variation in prevalence at small scales was observed and needs to be taken into account for malaria surveillance and control. Potential larval habitat frequency had no direct impact on prevalence.

SELECTION OF CITATIONS
SEARCH DETAIL
...