Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Emerg Infect Dis ; 29(12): 2498-2508, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37966106

ABSTRACT

The Anopheles stephensi mosquito is an invasive malaria vector recently reported in Djibouti, Ethiopia, Sudan, Somalia, Nigeria, and Ghana. The World Health Organization has called on countries in Africa to increase surveillance efforts to detect and report this vector and institute appropriate and effective control mechanisms. In Kenya, the Division of National Malaria Program conducted entomological surveillance in counties at risk for An. stephensi mosquito invasion. In addition, the Kenya Medical Research Institute conducted molecular surveillance of all sampled Anopheles mosquitoes from other studies to identify An. stephensi mosquitoes. We report the detection and confirmation of An. stephensi mosquitoes in Marsabit and Turkana Counties by using endpoint PCR and morphological and sequence identification. We demonstrate the urgent need for intensified entomological surveillance in all areas at risk for An. stephensi mosquito invasion, to clarify its occurrence and distribution and develop tailored approaches to prevent further spread.


Subject(s)
Anopheles , Biomedical Research , Malaria , Animals , Kenya/epidemiology , Malaria/epidemiology , Malaria/prevention & control , Mosquito Vectors
2.
Article in English | MEDLINE | ID: mdl-36590345

ABSTRACT

Spatial repellent (SR) products are envisioned to complement existing vector control methods through the continual release of volatile active ingredients (AI) providing: (i) protection against day-time and early-evening biting; (ii) protection in enclosed/semi-enclosed and peri-domestic spaces; (iii) various formulations to fit context-specific applications; and (iv) increased coverage over traditional control methods. SR product AIs also have demonstrated effect against insecticide-resistant vectors linked to malaria and Aedes-borne virus (ABV) transmission. Over the past two decades, key stakeholders, including World Health Organization (WHO) representatives, have met to discuss the role of SRs in reducing arthropod-borne diseases based on existing evidence. A key focus has been to establish a critical development path for SRs, including scientific, regulatory and social parameters that would constitute an outline for a SR target product profile, i.e. optimum product characteristics. The principal gap is the lack of epidemiological data demonstrating SR public health impact across a range of different ecological and epidemiological settings, to inform a WHO policy recommendation. Here we describe in brief trials that are designed to fulfill evidence needs for WHO assessment and initial projections of SR cost-effectiveness against malaria and dengue.

3.
Trials ; 23(1): 260, 2022 Apr 05.
Article in English | MEDLINE | ID: mdl-35382858

ABSTRACT

BACKGROUND: Spatial repellents are widely used for prevention of mosquito bites and evidence is building on their public health value, but their efficacy against malaria incidence has never been evaluated in Africa. To address this knowledge gap, a trial to evaluate the efficacy of Mosquito Shield™, a spatial repellent incorporating transfluthrin, was developed for implementation in Busia County, western Kenya where long-lasting insecticidal net coverage is high and baseline malaria transmission is moderate to high year-round. METHODS: This trial is designed as a cluster-randomized, placebo-controlled, double-blinded clinical trial. Sixty clusters will be randomly assigned in a 1:1 ratio to receive spatial repellent or placebo. A total of 6120 children aged ≥6 months to 10 years of age will be randomly selected from the study clusters, enrolled into an active cohort (baseline, cohort 1, and cohort 2), and sampled monthly to determine time to first infection by smear microscopy. Each cohort following the implementation of the intervention will be split into two groups, one to estimate direct effect of the spatial repellent and the other to estimate degree of diversion of mosquitoes and malaria transmission to unprotected persons. Malaria incidence in each cohort will be estimated and compared (primary indicator) to determine benefit of using a spatial repellent in a high, year-round malaria transmission setting. Mosquitoes will be collected monthly using CDC light traps to determine if there are entomological correlates of spatial repellent efficacy that may be useful for the evaluation of new spatial repellents. Quarterly human landing catches will assess behavioral effects of the intervention. DISCUSSION: Findings will serve as the first cluster-randomized controlled trial powered to detect spatial repellent efficacy to reduce malaria in sub-Saharan Africa where transmission rates are high, insecticide-treated nets are widely deployed, and mosquitoes are resistant to insecticides. Results will be submitted to the World Health Organization Vector Control Advisory Group for assessment of public health value towards an endorsement to recommend inclusion of spatial repellents in malaria control programs. TRIAL REGISTRATION: ClinicalTrials.gov NCT04766879 . Registered February 23, 2021.


Subject(s)
Insect Repellents , Insecticide-Treated Bednets , Insecticides , Malaria , Animals , Child , Humans , Incidence , Insect Repellents/pharmacology , Insecticides/pharmacology , Kenya/epidemiology , Malaria/epidemiology , Malaria/prevention & control , Mosquito Control/methods , Randomized Controlled Trials as Topic
4.
Sci Rep ; 9(1): 13335, 2019 09 16.
Article in English | MEDLINE | ID: mdl-31527637

ABSTRACT

The spread of resistance to insecticides in disease-carrying mosquitoes poses a threat to the effectiveness of control programmes, which rely largely on insecticide-based interventions. Monitoring mosquito populations is essential, but obtaining phenotypic measurements of resistance is laborious and error-prone. High-throughput genotyping offers the prospect of quick and repeatable estimates of resistance, while also allowing resistance markers to be tracked and studied. To demonstrate the potential of highly-mulitplexed genotypic screening for measuring resistance-association of mutations and tracking their spread, we developed a panel of 28 known or putative resistance markers in the major malaria vector Anopheles gambiae, which we used to screen mosquitoes from a wide swathe of Sub-Saharan Africa (Burkina Faso, Ghana, Democratic Republic of Congo (DRC) and Kenya). We found resistance association in four markers, including a novel mutation in the detoxification gene Gste2 (Gste2-119V). We also identified a duplication in Gste2 combining a resistance-associated mutation with its wild-type counterpart, potentially alleviating the costs of resistance. Finally, we describe the distribution of the multiple origins of kdr resistance, finding unprecedented diversity in the DRC. This panel represents the first step towards a quantitative genotypic model of insecticide resistance that can be used to predict resistance status in An. gambiae.


Subject(s)
Anopheles/drug effects , Anopheles/genetics , Insecticide Resistance/genetics , Insecticides/pharmacology , Africa South of the Sahara , Animals , Anopheles/parasitology , Genetic Markers/genetics , Genotyping Techniques , Glutathione Transferase/genetics , High-Throughput Nucleotide Sequencing , Insect Proteins/genetics , Malaria/prevention & control , Malaria/transmission , Mosquito Vectors/genetics , Mosquito Vectors/parasitology , Polymerase Chain Reaction
5.
Clin Pharmacol Ther ; 105(2): 388-401, 2019 02.
Article in English | MEDLINE | ID: mdl-30125353

ABSTRACT

High-dose ivermectin, co-administered for 3 days with dihydroartemisinin-piperaquine (DP), killed mosquitoes feeding on individuals for at least 28 days posttreatment in a recent trial (IVERMAL), whereas 7 days was predicted pretrial. The current study assessed the relationship between ivermectin blood concentrations and the observed mosquitocidal effects against Anopheles gambiae s.s. Three days of ivermectin 0, 300, or 600 mcg/kg/day plus DP was randomly assigned to 141 adults with uncomplicated malaria in Kenya. During 28 days of follow-up, 1,393 venous and 335 paired capillary plasma samples, 850 mosquito-cluster mortality rates, and 524 QTcF-intervals were collected. Using pharmacokinetic/pharmacodynamic (PK/PD) modeling, we show a consistent correlation between predicted ivermectin concentrations and observed mosquitocidal-effects throughout the 28-day study duration, without invoking an unidentified mosquitocidal metabolite or drug-drug interaction. Ivermectin had no effect on piperaquine's PKs or QTcF-prolongation. The PK/PD model can be used to design new treatment regimens with predicted mosquitocidal effect. This methodology could be used to evaluate effectiveness of other endectocides.


Subject(s)
Anopheles , Antimalarials/pharmacology , Antimalarials/pharmacokinetics , Artemisinins/pharmacology , Artemisinins/pharmacokinetics , Insecticides/pharmacology , Insecticides/pharmacokinetics , Ivermectin/pharmacology , Ivermectin/pharmacokinetics , Malaria/drug therapy , Quinolines/pharmacology , Quinolines/pharmacokinetics , Adult , Animals , Dose-Response Relationship, Drug , Double-Blind Method , Drug Combinations , Drug Interactions , Female , Humans , Kenya , Long QT Syndrome/chemically induced , Long QT Syndrome/epidemiology , Male , Treatment Outcome
6.
Clin Infect Dis ; 69(7): 1112-1119, 2019 09 13.
Article in English | MEDLINE | ID: mdl-30590537

ABSTRACT

BACKGROUND: Ivermectin is being considered for mass drug administration for malaria, due to its ability to kill mosquitoes feeding on recently treated individuals. In a recent trial, 3-day courses of 300 and 600 mcg/kg/day were shown to kill Anopheles mosquitoes for at least 28 days post-treatment when fed patients' venous blood using membrane feeding assays. Direct skin feeding on humans may lead to higher mosquito mortality, as ivermectin capillary concentrations are higher. We compared mosquito mortality following direct skin and membrane feeding. METHODS: We conducted a mosquito feeding study, nested within a randomized, double-blind, placebo-controlled trial of 141 adults with uncomplicated malaria in Kenya, comparing 3 days of ivermectin 300 mcg/kg/day, ivermectin 600 mcg/kg/day, or placebo, all co-administered with 3 days of dihydroartemisinin-piperaquine. On post-treatment day 7, direct skin and membrane feeding assays were conducted using laboratory-reared Anopheles gambiae sensu stricto. Mosquito survival was assessed daily for 28 days post-feeding. RESULTS: Between July 20, 2015, and May 7, 2016, 69 of 141 patients participated in both direct skin and membrane feeding (placebo, n = 23; 300 mcg/kg/day, n = 24; 600 mcg/kg/day, n = 22). The 14-day post-feeding mortality for mosquitoes fed 7 days post-treatment on blood from pooled patients in both ivermectin arms was similar with direct skin feeding (mosquitoes observed, n = 2941) versus membrane feeding (mosquitoes observed, n = 7380): cumulative mortality (risk ratio 0.99, 95% confidence interval [CI] 0.95-1.03, P = .69) and survival time (hazard ratio 0.96, 95% CI 0.91-1.02, P = .19). Results were consistent by sex, by body mass index, and across the range of ivermectin capillary concentrations studied (0.72-73.9 ng/mL). CONCLUSIONS: Direct skin feeding and membrane feeding on day 7 resulted in similar mosquitocidal effects of ivermectin across a wide range of drug concentrations, suggesting that the mosquitocidal effects seen with membrane feeding accurately reflect those of natural biting. Membrane feeding, which is more patient friendly and ethically acceptable, can likely reliably be used to assess ivermectin's mosquitocidal efficacy. CLINICAL TRIALS REGISTRATION: NCT02511353.


Subject(s)
Antiparasitic Agents/administration & dosage , Culicidae/drug effects , Insecticides/administration & dosage , Ivermectin/administration & dosage , Adult , Animals , Anopheles/drug effects , Antiparasitic Agents/pharmacokinetics , Feeding Behavior , Female , Humans , Ivermectin/pharmacokinetics , Malaria/parasitology , Malaria/prevention & control , Male , Mosquito Control , Young Adult
7.
Lancet Infect Dis ; 18(6): 615-626, 2018 06.
Article in English | MEDLINE | ID: mdl-29602751

ABSTRACT

BACKGROUND: Ivermectin is being considered for mass drug administration for malaria due to its ability to kill mosquitoes feeding on recently treated individuals. However, standard, single doses of 150-200 µg/kg used for onchocerciasis and lymphatic filariasis have a short-lived mosquitocidal effect (<7 days). Because ivermectin is well tolerated up to 2000 µg/kg, we aimed to establish the safety, tolerability, and mosquitocidal efficacy of 3 day courses of high-dose ivermectin, co-administered with a standard malaria treatment. METHODS: We did a randomised, double-blind, placebo-controlled, superiority trial at the Jaramogi Oginga Odinga Teaching and Referral Hospital (Kisumu, Kenya). Adults (aged 18-50 years) were eligible if they had confirmed symptomatic uncomplicated Plasmodium falciparum malaria and agreed to the follow-up schedule. Participants were randomly assigned (1:1:1) using sealed envelopes, stratified by sex and body-mass index (men: <21 vs ≥21 kg/m2; women: <23 vs ≥23 kg/m2), with permuted blocks of three, to receive 3 days of ivermectin 300 µg/kg per day, ivermectin 600 µg/kg per day, or placebo, all co-administered with 3 days of dihydroartemisinin-piperaquine. Blood of patients taken on post-treatment days 0, 2 + 4 h, 7, 10, 14, 21, and 28 was fed to laboratory-reared Anopheles gambiae sensu stricto mosquitoes, and mosquito survival was assessed daily for 28 days after feeding. The primary outcome was 14-day cumulative mortality of mosquitoes fed 7 days after ivermectin treatment (from participants who received at least one dose of study medication). The study is registered with ClinicalTrials.gov, number NCT02511353. FINDINGS: Between July 20, 2015, and May 7, 2016, 741 adults with malaria were assessed for eligibility, of whom 141 were randomly assigned to receive ivermectin 600 µg/kg per day (n=47), ivermectin 300 µg/kg per day (n=48), or placebo (n=46). 128 patients (91%) attended the primary outcome visit 7 days post treatment. Compared with placebo, ivermectin was associated with higher 14 day post-feeding mosquito mortality when fed on blood taken 7 days post treatment (ivermectin 600 µg/kg per day risk ratio [RR] 2·26, 95% CI 1·93-2·65, p<0·0001; hazard ratio [HR] 6·32, 4·61-8·67, p<0·0001; ivermectin 300 µg/kg per day RR 2·18, 1·86-2·57, p<0·0001; HR 4·21, 3·06-5·79, p<0·0001). Mosquito mortality remained significantly increased 28 days post treatment (ivermectin 600 µg/kg per day RR 1·23, 1·01-1·50, p=0·0374; and ivermectin 300 µg/kg per day 1·21, 1·01-1·44, p=0·0337). Five (11%) of 45 patients receiving ivermectin 600 µg/kg per day, two (4%) of 48 patients receiving ivermectin 300 µg/kg per day, and none of 46 patients receiving placebo had one or more treatment-related adverse events. INTERPRETATION: Ivermectin at both doses assessed was well tolerated and reduced mosquito survival for at least 28 days after treatment. Ivermectin 300 µg/kg per day for 3 days provided a good balance between efficacy and tolerability, and this drug shows promise as a potential new tool for malaria elimination. FUNDING: Malaria Eradication Scientific Alliance (MESA) and US Centers for Disease Control and Prevention (CDC).


Subject(s)
Antimalarials/therapeutic use , Artemisinins/therapeutic use , Insecticides/therapeutic use , Ivermectin/therapeutic use , Malaria/drug therapy , Quinolines/pharmacology , Adolescent , Adult , Albuterol, Ipratropium Drug Combination , Antimalarials/administration & dosage , Artemisinins/administration & dosage , Double-Blind Method , Drug Therapy, Combination , Female , Humans , Insecticides/administration & dosage , Insecticides/adverse effects , Ivermectin/administration & dosage , Ivermectin/adverse effects , Male , Middle Aged , Quinolines/administration & dosage , Young Adult
8.
Parasit Vectors ; 7: 76, 2014 Feb 21.
Article in English | MEDLINE | ID: mdl-24559061

ABSTRACT

BACKGROUND: Malaria control programmes across Africa and beyond are facing increasing insecticide resistance in the major anopheline vectors. In order to preserve or prolong the effectiveness of the main malaria vector interventions, up-to-date and easily accessible insecticide resistance data that are interpretable at operationally-relevant scales are critical. Herein we introduce and demonstrate the usefulness of an online mapping tool, IR Mapper. METHODS: A systematic search of published, peer-reviewed literature was performed and Anopheles insecticide susceptibility and resistance mechanisms data were extracted and added to a database after a two-level verification process. IR Mapper ( http://www.irmapper.com) was developed using the ArcGIS for JavaScript Application Programming Interface and ArcGIS Online platform for exploration and projection of these data. RESULTS: Literature searches yielded a total of 4,084 susceptibility data points for 1,505 populations, and 2,097 resistance mechanisms data points for 1,000 populations of Anopheles spp. tested via recommended WHO methods from 54 countries between 1954 and 2012. For the Afrotropical region, data were most abundant for populations of An. gambiae, and pyrethroids and DDT were more often used in susceptibility assays (51.1 and 26.8% of all reports, respectively) than carbamates and organophosphates. Between 2001 and 2012, there was a clear increase in prevalence and distribution of confirmed resistance of An. gambiae s.l. to pyrethroids (from 41 to 87% of the mosquito populations tested) and DDT (from 64 to 91%) throughout the Afrotropical region. Metabolic resistance mechanisms were detected in western and eastern African populations and the two kdr mutations (L1014S and L1014F) were widespread. For An. funestus s.l., relatively few populations were tested, although in 2010-2012 resistance was reported in 50% of 10 populations tested. Maps are provided to illustrate the use of IR Mapper and the distribution of insecticide resistance in malaria vectors in Africa. CONCLUSIONS: The increasing pyrethroid and DDT resistance in Anopheles in the Afrotropical region is alarming. Urgent attention should be afforded to testing An. funestus populations especially for metabolic resistance mechanisms. IR Mapper is a useful tool for investigating temporal and spatial trends in Anopheles resistance to support the pragmatic use of insecticidal interventions.


Subject(s)
Anopheles/genetics , Insect Vectors/genetics , Insecticide Resistance/genetics , Insecticides/pharmacology , Malaria/prevention & control , Africa/epidemiology , Animals , Anopheles/drug effects , DDT/pharmacology , Humans , Insect Proteins/genetics , Insect Vectors/drug effects , Malaria/transmission , Mutation , Permethrin/pharmacology , Pyrethrins/pharmacology , Spatio-Temporal Analysis
9.
Malar J ; 12: 368, 2013 Oct 24.
Article in English | MEDLINE | ID: mdl-24156715

ABSTRACT

BACKGROUND: Long-lasting insecticide-treated mosquito nets (LLINs) are a primary malaria prevention strategy in sub-Saharan Africa. However, emergence of insecticide resistance threatens the effectiveness of LLINs. METHODS: Cross-sectional surveys of LLINs were conducted in houses of seven and four villages in Gem and Bungoma Districts in western Kenya, respectively. Condition (number and area of holes in the nets), number and species of mosquitoes resting inside them, and insecticidal activity of nets were quantified. Mosquitoes collected inside nets were allowed to lay eggs and progeny tested for susceptibility to deltamethrin and permethrin, pyrethoids commonly deployed in LLINs in western Kenya. RESULTS: In Gem, 83.3% of nets were less than three years old and 32.4% had at least one hole of any size; while in Bungoma, 92% were less than three years old and 48% had at least one hole. No anopheline and five Culex spp. mosquitoes were found resting inside nets in Gem regardless of the number and size of holes, while 552 Anopheles gambiae s.l., five Anopheles funestus s.l. and 137 Culex spp. were in nets in Bungoma. The number of mosquitoes resting inside nets increased with hole areas >50 cm in Bungoma. In WHO resistance assays, f1 offspring of samples collected in nets in Bungoma were 94 and 65% resistant to deltamethrin and permethrin, respectively. Nets from Bungoma retained strong activity against a susceptible laboratory strain, but not against f1 offspring of field-collected An. gambiae s.s. All An. gambiae s.s. samples collected in nets were homozygous for the kdr genotype L1014S. CONCLUSIONS: In areas with pyrethroid resistant vectors, LLINs with modest hole areas permit mosquito entry and feeding, providing little protection against the vectors. LLIN formulations develop large holes within three years of use, diminishing their presupposed lifetime effectiveness.


Subject(s)
Anopheles/growth & development , Culex/growth & development , Insecticide Resistance , Insecticide-Treated Bednets/statistics & numerical data , Insecticides/pharmacology , Mosquito Control/methods , Pyrethrins/pharmacology , Animals , Anopheles/classification , Cross-Sectional Studies , Culex/classification , Female , Humans , Kenya , Malaria/prevention & control , Nitriles/pharmacology , Permethrin/pharmacology , Population Density , Rural Population
SELECTION OF CITATIONS
SEARCH DETAIL
...