Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 4302, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773082

ABSTRACT

Hot plasma is highly conductive in the direction parallel to a magnetic field. This often means that the electrical potential will be nearly constant along any given field line. When this is the case, the cross-field voltage drops in open-field-line magnetic confinement devices are limited by the tolerances of the solid materials wherever the field lines impinge on the plasma-facing components. To circumvent this voltage limitation, it is proposed to arrange large voltage drops in the interior of a device, but coexist with much smaller drops on the boundaries. To avoid prohibitively large dissipation requires both preventing substantial drift-flow shear within flux surfaces and preventing large parallel electric fields from driving large parallel currents. It is demonstrated here that both requirements can be met simultaneously, which opens up the possibility for magnetized plasma tolerating steady-state voltage drops far larger than what might be tolerated in material media.

2.
Phys Rev Lett ; 130(20): 205101, 2023 May 19.
Article in English | MEDLINE | ID: mdl-37267532

ABSTRACT

Spectroscopic measurements of the magnetic field evolution in a Z-pinch throughout stagnation and with particularly high spatial resolution reveal a sudden current redistribution from the stagnating plasma (SP) to a low-density plasma (LDP) at larger radii, while the SP continues to implode. Based on the plasma parameters it is shown that the current is transferred to an increasing-conductance LDP outside the stagnation, a process likely to be induced by the large impedance of the SP. Since an LDP often exists around imploding plasmas and in various pulsed-power systems, such a fast current redistribution may dramatically affect the behavior and achievable parameters in these systems.

3.
Phys Rev Lett ; 128(1): 015001, 2022 Jan 07.
Article in English | MEDLINE | ID: mdl-35061496

ABSTRACT

Using detailed spectroscopic measurements, highly resolved in both time and space, a self-generated plasma rotation is demonstrated using a cylindrical implosion with a preembedded axial magnetic field (B_{z0}). The rotation direction is found to depend on the direction of B_{z0} and its velocity is found comparable to the peak implosion velocity, considerably affecting the force and energy balance throughout the implosion. Moreover, the evolution of the rotation is consistent with magnetic flux surface isorotation, a novel observation in a Z pinch, which is a prototypical time dependent system.

4.
Phys Rev E ; 104(1-2): 015209, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34412294

ABSTRACT

In steady state, the fuel cycle of a fusion plasma requires inward particle fluxes of fuel ions. These particle flows are also accompanied by heating. In the case of classical transport in a rotating cylindrical plasma, this heating can proceed through several distinct channels depending on the physical mechanisms involved. Some channels directly heat the fuel ions themselves, whereas others heat electrons. Which channel dominates depends, in general, on the details of the temperature, density and rotation profiles of the plasma constituents. However, remarkably, under relatively few assumptions concerning these profiles, if the α particles, the by-products of the fusion reaction, can be removed directly by other means, then a hot-ion mode tends to emerge naturally.

5.
Phys Rev E ; 102(1-1): 013212, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32795044

ABSTRACT

Stratification due to ion-ion friction in a magnetized multiple-ion species plasma is shown to be accompanied by a heat pump effect, transferring heat from one ion species to another as well as from one region of space to another. The heat pump is produced via identified heating mechanisms associated with charge incompressibility and the Ettingshausen effect. Besides their academic interest, these effects may have useful applications to plasma technologies that involve rotation or compression.

SELECTION OF CITATIONS
SEARCH DETAIL
...