Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Langmuir ; 26(16): 13399-406, 2010 Aug 17.
Article in English | MEDLINE | ID: mdl-20695584

ABSTRACT

A photosynthetic reaction center (RC) pigment-protein complex purified from a thermophilic purple photosynthetic bacterium, Thermochromatium tepidum, was adsorbed to a folded-sheet silica mesoporous material (FSM). The RC has a molecular structure with a 7.0 x 5.0 x 13 nm diameter. The amount of RC adsorbed to the FSM compound with an average internal pore diameter of 7.9 nm (FSM(7.9)) was high at 0.29 gRC/gFSM, while that to the FSM(2.7) (2.7 nm diameter) was low at 0.02 gRC/gFSM, suggesting the specific binding of the RC into the 7.9 nm pores of FSM(7.9). An N(2)-adsorption isotherm study indicated the incorporation of the RC into the 7.9 nm pores. The RC inside FSM(7.9) showed absorption spectra in the visible and infrared regions similar to those of the RC in solution, indicating almost no structural changes induced by the adsorption. The RC-FSM(7.9) conjugate showed the high photochemical activity with the increased thermal stability up to 50 degrees C in the measurements by laser spectroscopy. The conjugates rapidly provided electrons to a dye in the outer medium or showed electric current on the ITO electrode upon the illumination. The RC-FSM conjugate will be useful for the construction of artificial photosynthetic systems and new photodevices.


Subject(s)
Nanostructures/chemistry , Photosynthesis , Proteins/chemistry , Silicon Dioxide/chemistry , Electron Transport , Nanotechnology , Spectroscopy, Fourier Transform Infrared
2.
J Phys Chem B ; 110(3): 1114-20, 2006 Jan 26.
Article in English | MEDLINE | ID: mdl-16471652

ABSTRACT

A high amount of functional membrane protein complex was introduced into a folded-sheet silica mesoporous material (FSM) that has nanometer-size pores of honeycomb-like hexagonal cylindrical structure inside. The photosynthetic light-harvesting complex LH2, which is a typical membrane protein, has a cylindrical structure of 7.3 nm diameter and contains 27 bacteriochlorophyll a and nine carotenoid molecules. The complex captures light energy in the anoxygenic thermophilic purple photosynthetic bacterium Thermochromatium tepidum. The amount of LH2 adsorbed to FSM was determined optically and by the adsorption isotherms of N2. The FSM compounds with internal pore diameters of 7.9 and 2.7 nm adsorbed LH2 at 1.11 and 0.24 mg/mg FSM, respectively, suggesting the high specific affinity of LH2 to the interior of the hydrophobic nanopores with a diameter of 7.9 nm. The LH2 adsorbed to FSM showed almost intact absorption bands of bacteriochlorophylls, and was fully active in the capture and transfer of excitation energy. The LH2 complex inside the FSM showed increased heat stability of the exciton-type absorption band of bacteriochlorophylls (B850), suggesting higher circular symmetry. The environment inside the hydrophobic silica nanopores can be a new matrix for the membrane proteins to reveal their functions. The silica-membrane protein adduct will be useful for the construction of new probes and reaction systems.


Subject(s)
Bacterial Proteins/chemistry , Light-Harvesting Protein Complexes/chemistry , Nanostructures/chemistry , Silicon Dioxide/chemistry , Adsorption , Binding Sites , Chromatiaceae/chemistry , Particle Size , Porosity , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...