Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 81
Filter
Add more filters











Publication year range
1.
In Vivo ; 38(5): 2190-2196, 2024.
Article in English | MEDLINE | ID: mdl-39187339

ABSTRACT

BACKGROUND/AIM: In a previous report, our group showed that oral administration of lipopolysaccharides (LPS) from Pantoea agglomerans can prevent the progression of streptozotocin (STZ)-induced diabetes-related cognitive dysfunction (DRCD) in mice without causing significant side-effects. However, the treatment effects of oral administration of LPS to DRCD remain unknown. MATERIALS AND METHODS: We modified our previous animal experimental model to investigate whether oral administration of LPS can recover cognitive function after DRCD onset. RESULTS: The Morris water maze (MWM) revealed a significant decrease in learning and memory abilities at 13 days after intracerebroventricular administration of STZ, thereby providing evidence of the occurrence of DRCD in the animal model. Oral administration of LPS (1 mg/kg per day) started after cognitive impairment was observed. After 28 days of treatment, mice receiving LPS via the oral route showed significant recovery of spatial learning ability, a symptom of early dementia, while only a trend toward recovery was seen for spatial memory compared to the untreated group. CONCLUSION: These results, limited to MWM, suggest that oral administration of LPS is a promising therapeutic strategy for restoring decreased spatial learning ability.


Subject(s)
Cognitive Dysfunction , Diabetes Mellitus, Experimental , Disease Models, Animal , Lipopolysaccharides , Maze Learning , Spatial Learning , Animals , Lipopolysaccharides/adverse effects , Lipopolysaccharides/administration & dosage , Mice , Administration, Oral , Cognitive Dysfunction/etiology , Cognitive Dysfunction/drug therapy , Male , Diabetes Mellitus, Experimental/complications , Spatial Learning/drug effects , Maze Learning/drug effects , Streptozocin/administration & dosage
2.
Sci Rep ; 14(1): 15394, 2024 07 04.
Article in English | MEDLINE | ID: mdl-38965275

ABSTRACT

Some herbal extracts contain relatively high amounts of lipopolysaccharide (LPS). Because orally administered LPS activates innate immunity without inducing inflammation, it plays a role as an active ingredient in herbal extracts. However, the LPS content in herbal extracts remains extensively unevaluated. This study aimed to create a database of LPS content in herbal extracts; therefore, the LPS content of 414 herbal extracts was measured and the macrophage activation potential was evaluated. The LPS content of these hot water extracts was determined using the kinetic-turbidimetric method. The LPS concentration ranged from a few ng/g to hundreds of µg/g (Standard Escherichia coli LPS equivalent). Twelve samples had a high-LPS-content of > 100 µg/g, including seven samples from roots and three samples from leaves of the herbal extracts. These samples showed high phagocytosis and NO production capacity, and further investigation using polymyxin B, an LPS inhibitor, significantly inhibited macrophage activation. This study suggests that some herbal extracts contain sufficient LPS concentration to activate innate immunity. Therefore, a new approach to evaluate the efficacy of herbal extracts based on their LPS content was proposed. A database listing the LPS content of different herbal extracts is essential for this approach.


Subject(s)
Immunity, Innate , Lipopolysaccharides , Macrophage Activation , Phagocytosis , Plant Extracts , Plant Extracts/pharmacology , Plant Extracts/chemistry , Immunity, Innate/drug effects , Phagocytosis/drug effects , Animals , Mice , Macrophage Activation/drug effects , RAW 264.7 Cells , Macrophages/drug effects , Macrophages/immunology , Macrophages/metabolism , Nitric Oxide/metabolism , Plant Leaves/chemistry
3.
Front Immunol ; 15: 1286270, 2024.
Article in English | MEDLINE | ID: mdl-38715610

ABSTRACT

Immunotherapy is renowned for its capacity to elicit anti-infective and anti-cancer effects by harnessing immune responses to microbial components and bolstering innate healing mechanisms through a cascade of immunological reactions. Specifically, mammalian Toll-like receptors (TLRs) have been identified as key receptors responsible for detecting microbial components. The discovery of these mammalian Toll-like receptors has clarified antigen recognition by the innate immune system. It has furnished a molecular foundation for comprehending the interplay between innate immunity and its anti-tumor or anti-infective capabilities. Moreover, accumulating evidence highlights the crucial role of TLRs in maintaining tissue homeostasis. It has also become evident that TLR-expressing macrophages play a central role in immunity by participating in the clearance of foreign substances, tissue repair, and the establishment of new tissue. This macrophage network, centered on macrophages, significantly contributes to innate healing. This review will primarily delve into innate immunity, specifically focusing on substances targeting TLR4.


Subject(s)
Homeostasis , Immunity, Innate , Macrophages , Toll-Like Receptor 4 , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 4/immunology , Humans , Animals , Ligands , Macrophages/immunology , Macrophages/metabolism , Signal Transduction
4.
Chem Pharm Bull (Tokyo) ; 72(2): 226-233, 2024.
Article in English | MEDLINE | ID: mdl-38417868

ABSTRACT

Vizantin, 6,6'-bis-O-(3-nonyldodecanoyl)-α,α'-trehalose, has been developed as a safe immunostimulator on the basis of a structure-activity relationship study with trehalose 6,6'-dicorynomycolate. Our recent study indicated that vizantin acts as an effective Toll-like receptor-4 (TLR4) partial agonist to reduce the lethality of an immune shock caused by lipopolysaccharide (LPS). However, because vizantin has low solubility in water, the aqueous solution used in in vivo assay systems settles out in tens of minutes. Here, vizantin was chemically modified in an attempt to facilitate the preparation of an aqueous solution of the drug. This paper describes the concise synthesis of a water-soluble vizantin analogue in which all the hydroxyl groups of the sugar unit were replaced by sulfates. The vizantin derivative displayed micelle-forming ability in water and potent TLR-4 partial agonist activity.


Subject(s)
Glycolipids , Lipopolysaccharides , Trehalose/analogs & derivatives , Lipopolysaccharides/pharmacology
5.
Int J Mol Sci ; 24(5)2023 Feb 27.
Article in English | MEDLINE | ID: mdl-36902049

ABSTRACT

Lipopolysaccharide (LPS), an endotoxin, induces systemic inflammation by injection and is thought to be a causative agent of chronic inflammatory diseases, including type 2 diabetes mellitus (T2DM). However, our previous studies found that oral LPS administration does not exacerbate T2DM conditions in KK/Ay mice, which is the opposite of the response from LPS injection. Therefore, this study aims to confirm that oral LPS administration does not aggravate T2DM and to investigate the possible mechanisms. In this study, KK/Ay mice with T2DM were orally administered LPS (1 mg/kg BW/day) for 8 weeks, and blood glucose parameters before and after oral administration were compared. Abnormal glucose tolerance, insulin resistance progression, and progression of T2DM symptoms were suppressed by oral LPS administration. Furthermore, the expressions of factors involved in insulin signaling, such as insulin receptor, insulin receptor substrate 1, thymoma viral proto-oncogene, and glucose transporter type 4, were upregulated in the adipose tissues of KK/Ay mice, where this effect was observed. For the first time, oral LPS administration induces the expression of adiponectin in adipose tissues, which is involved in the increased expression of these molecules. Briefly, oral LPS administration may prevent T2DM by inducing an increase in the expressions of insulin signaling-related factors based on adiponectin production in adipose tissues.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Lipopolysaccharides , Animals , Mice , Adiponectin/metabolism , Administration, Oral , Blood Glucose/metabolism , Diabetes Mellitus, Type 2/metabolism , Diabetes Mellitus, Type 2/therapy , Insulin/metabolism , Insulin Resistance/physiology , Lipopolysaccharides/administration & dosage , Lipopolysaccharides/pharmacology , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/therapy
6.
Antibiotics (Basel) ; 10(3)2021 Mar 17.
Article in English | MEDLINE | ID: mdl-33803007

ABSTRACT

Macrolides are used to treat various infectious diseases, including periodontitis. Furthermore, macrolides are known to have immunomodulatory effects; however, the underlying mechanism of their action remains unclear. DEL-1 has emerged as an important factor in homeostatic immunity and osteoclastogenesis. Specifically, DEL-1 is downregulated in periodontitis tissues. Therefore, in the present study, we investigated whether the osteoclastogenesis inhibitory effects of erythromycin (ERM) are mediated through upregulation of DEL-1 expression. We used a ligature-induced periodontitis model in C57BL/6Ncrl wild-type or DEL-1-deficient mice and in vitro cell-based mechanistic studies to investigate how ERM inhibits alveolar bone resorption. As a result of measuring alveolar bone resorption and gene expression in the tooth ligation model, ERM treatment reduced bone loss by increasing DEL-1 expression and decreasing the expression of osteoclast-related factors in wild-type mice. In DEL-1-deficient mice, ERM failed to suppress bone loss and gene expression of osteoclast-related factors. In addition, ERM treatment downregulated osteoclast differentiation and calcium resorption in in vitro experiments with mouse bone marrow-derived macrophages. In conclusion, ERM promotes the induction of DEL-1 in periodontal tissue, which may regulate osteoclastogenesis and decrease inflammatory bone resorption. These findings suggest that ERM may exert immunomodulatory effects in a DEL-1-dependent manner.

7.
J Dermatol ; 48(4): 551-555, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33369759

ABSTRACT

The in vitro microbicidal activity of benzoyl peroxide against Cutibacterium acnes, Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli, Pseudomonas aeruginosa, Candida albicans, Malassezia furfur, Malassezia restricta, and Malassezia globosa was investigated. These strains were incubated for 1 h in the presence of 0.25, 0.5, 1, or 2 mmol/L benzoyl peroxide in phosphate buffered saline supplemented with 0.1% glycerol and 2% Tween 80. After exposure to benzoyl peroxide, counts of viable Gram-positive bacteria and fungi were markedly decreased, whereas counts of Gram-negative bacteria were unchanged. Transmission electron microscopy images showed a decrease in electron density and the destruction of C. acnes and M. restricta cell walls after exposure to 2 mmol/L benzoyl peroxide. In conclusion, this study showed that benzoyl peroxide has a potent and rapid microbicidal activity against Gram-positive bacteria and fungi that are associated with various cutaneous diseases. This suggests that the direct destruction of bacterial cell walls by benzoyl peroxide is an essential mechanism of its rapid and potent microbicidal activity against microorganisms.


Subject(s)
Benzoyl Peroxide , Propionibacterium acnes , Malassezia , Microbial Sensitivity Tests
8.
BMC Microbiol ; 20(1): 361, 2020 11 25.
Article in English | MEDLINE | ID: mdl-33238885

ABSTRACT

BACKGROUND: Sulfated vizantin, a recently developed immunostimulant, has also been found to exert antibiofilm properties. It acts not as a bactericide, but as a detachment-promoting agent by reducing the biofilm structural stability. This study aimed to investigate the mechanism underlying this activity and its species specificity using two distinct ex vivo oral biofilm models derived from human saliva. RESULTS: The biofilm, composed mainly of the genus Streptococcus and containing 50 µM of sulfated vizantin, detached significantly from its basal surface with rotation at 500 rpm for only 15 s, even when 0.2% sucrose was supplied. Expression analyses for genes associated with biofilm formation and bacterial adhesion following identification of the Streptococcus species, revealed that a variety of Streptococcus species in a cariogenic biofilm showed downregulation of genes encoding glucosyltransferases involved in the biosynthesis of water-soluble glucan. The expression of some genes encoding surface proteins was also downregulated. Of the two quorum sensing systems involved in the genus Streptococcus, the expression of luxS in three species, Streptococcus oralis, Streptococcus gordonii, and Streptococcus mutans, was significantly downregulated in the presence of 50 µM sulfated vizantin. Biofilm detachment may be facilitated by the reduced structural stability due to these modulations. As a non-specific reaction, 50 µM sulfated vizantin decreased cell surface hydrophobicity by binding to the cell surface, resulting in reduced bacterial adherence. CONCLUSION: Sulfated vizantin may be a candidate for a new antibiofilm strategy targeting the biofilm matrix while preserving the resident microflora.


Subject(s)
Anti-Bacterial Agents/pharmacology , Biofilms/drug effects , Glycolipids/pharmacology , Streptococcus/physiology , Trehalose/analogs & derivatives , Anti-Bacterial Agents/chemistry , Bacterial Adhesion/drug effects , Bacterial Adhesion/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biofilms/growth & development , Dental Caries/microbiology , Epithelial Cells/drug effects , Gene Expression/drug effects , Gingivitis/microbiology , Glucosyltransferases/genetics , Glucosyltransferases/metabolism , Glycolipids/chemistry , Humans , Quorum Sensing/drug effects , Quorum Sensing/genetics , Streptococcus/classification , Streptococcus/drug effects , Streptococcus/growth & development , Sulfates/chemistry , Trehalose/chemistry , Trehalose/pharmacology
9.
JCI Insight ; 5(15)2020 08 06.
Article in English | MEDLINE | ID: mdl-32603314

ABSTRACT

Macrolide antibiotics exert antiinflammatory effects; however, little is known regarding their immunomodulatory mechanisms. In this study, using 2 distinct mouse models of mucosal inflammatory disease (LPS-induced acute lung injury and ligature-induced periodontitis), we demonstrated that the antiinflammatory action of erythromycin (ERM) is mediated through upregulation of the secreted homeostatic protein developmental endothelial locus-1 (DEL-1). Consistent with the anti-neutrophil recruitment action of endothelial cell-derived DEL-1, ERM inhibited neutrophil infiltration in the lungs and the periodontium in a DEL-1-dependent manner. Whereas ERM (but not other antibiotics, such as josamycin and penicillin) protected against lethal pulmonary inflammation and inflammatory periodontal bone loss, these protective effects of ERM were abolished in Del1-deficient mice. By interacting with the growth hormone secretagogue receptor and activating JAK2 in human lung microvascular endothelial cells, ERM induced DEL-1 transcription that was mediated by MAPK p38 and was CCAAT/enhancer binding protein-ß dependent. Moreover, ERM reversed IL-17-induced inhibition of DEL-1 transcription, in a manner that was dependent not only on JAK2 but also on PI3K/AKT signaling. Because DEL-1 levels are severely reduced in inflammatory conditions and with aging, the ability of ERM to upregulate DEL-1 may lead to a novel approach for the treatment of inflammatory and aging-related diseases.


Subject(s)
Acute Lung Injury/drug therapy , Calcium-Binding Proteins/physiology , Cell Adhesion Molecules/physiology , Erythromycin/pharmacology , Gene Expression Regulation/drug effects , Neutrophils/drug effects , Periodontitis/drug therapy , Pneumonia/drug therapy , Acute Lung Injury/etiology , Acute Lung Injury/pathology , Animals , Gastrointestinal Agents/pharmacology , Interleukin-17/pharmacology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Neutrophils/immunology , Neutrophils/pathology , Periodontitis/etiology , Periodontitis/pathology , Phosphatidylinositol 3-Kinases/metabolism , Pneumonia/etiology , Pneumonia/pathology , Proto-Oncogene Proteins c-akt/metabolism
10.
Front Microbiol ; 11: 573, 2020.
Article in English | MEDLINE | ID: mdl-32373082

ABSTRACT

Acinetobacter baumannii causes nosocomial infections due to its multidrug resistance and high environmental adaptability. Colistin is a polypeptide antibacterial agent that targets lipopolysaccharide (LPS) and is currently used to control serious multidrug-resistant Gram-negative bacterial infections, including those caused by A. baumannii. However, A. baumannii may acquire colistin resistance by losing their LPS. In mouse models, LPS-deficient A. baumannii have attenuated virulence. Nevertheless, the mechanism through which the pathogen is cleared by host immune cells is unknown. Here, we established colistin-resistant A. baumannii strains and analyzed possible mechanisms through which they are cleared by neutrophils. Colistin-resistant, LPS-deficient strains harbor mutations or insertion sequence (IS) in lpx genes, and introduction of intact lpx genes restored LPS deficiency. Analysis of interactions between these strains and neutrophils revealed that compared with wild type, LPS-deficient A. baumannii only weakly stimulated neutrophils, with consequent reduced levels of reactive oxygen species (ROS) and inflammatory cytokine production. Nonetheless, neutrophils preferentially killed LPS-deficient A. baumannii compared to wild-type strains. Moreover, LPS-deficient A. baumannii strains presented with increased sensitivities to antibacterial lysozyme and lactoferrin. We revealed that neutrophil-secreted lysozyme was the antimicrobial factor during clearance of LPS-deficient A. baumannii strains. These findings may inform the development of targeted therapeutics aimed to treat multidrug-resistant infections in immunocompromised patients who are unable to mount an appropriate cell-mediated immune response.

SELECTION OF CITATIONS
SEARCH DETAIL