Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Life Sci Alliance ; 4(10)2021 10.
Article in English | MEDLINE | ID: mdl-34344719

ABSTRACT

The duration of viral shedding is determined by a balance between de novo infection and removal of infected cells. That is, if infection is completely blocked with antiviral drugs (100% inhibition), the duration of viral shedding is minimal and is determined by the length of virus production. However, some mathematical models predict that if infected individuals are treated with antiviral drugs with efficacy below 100%, viral shedding may last longer than without treatment because further de novo infections are driven by entry of the virus into partially protected, uninfected cells at a slower rate. Using a simple mathematical model, we quantified SARS-CoV-2 infection dynamics in non-human primates and characterized the kinetics of viral shedding. We counterintuitively found that treatments initiated early, such as 0.5 d after virus inoculation, with intermediate to relatively high efficacy (30-70% inhibition of virus replication) yield a prolonged duration of viral shedding (by about 6.0 d) compared with no treatment.


Subject(s)
Antiviral Agents/pharmacology , COVID-19 Drug Treatment , COVID-19/virology , Virus Shedding/drug effects , Adenosine Monophosphate/analogs & derivatives , Adenosine Monophosphate/pharmacology , Alanine/analogs & derivatives , Alanine/pharmacology , Animals , Lung/virology , Macaca mulatta , Models, Theoretical , Nose/virology , Pharynx/virology , SARS-CoV-2/drug effects , SARS-CoV-2/physiology , Time Factors , Viral Load/drug effects , Virus Replication/drug effects
2.
J Theor Biol ; 509: 110493, 2021 01 21.
Article in English | MEDLINE | ID: mdl-32956668

ABSTRACT

Chimeric simian and human immunodeficiency viruses (SHIVs) are appropriate animal models for the human immunodeficiency virus (HIV) because HIV has quite a narrow host range. Additionally, SHIVs that encode the HIV-1 Env protein and are infectious to macaques have many strains that show different pathogenesis, such as the highly pathogenic SHIV-KS661 and the less pathogenic SHIV-#64. Therefore, we used SHIVs to understand different aspects of AIDS pathogenesis. In a previous study, we established a mathematical model of in vivo early SHIV infection dynamics, which revealed the expected uninfected and infected dynamics in Rhesus macaques. In concrete, the number of uninfected CD4+ T cells in SHIV-KS661-infected Rhesus macaques decreased more significantly and rapidly than that of SHIV-#64 Rhesus macaques, and these Rhesus macaques did not any induce host immune response. In contrast, the number of uninfected CD4+ T cells in SHIV-#64-infected Rhesus macaques is maintained, and host immune response developed. Although we considered that the peak viral load might determine whether systemic CD4+ T cell depletion occurs or host immune responses develop, we could not investigate this because our model quantified only SHIV infection prior to the development of the pathogenicity or host immune responses. Therefore, we developed a new mathematical model to investigate why SHIV-#64 and SHIV-KS661 showed different long-term viral dynamics. We fitted our new model considering antibody responses to our experimental datasets that included antibody titers, CD4+ T cells, and viral load data. We performed a maximum likelihood estimation using a non-linear mixed effect model. From the results, we derived the basic reproduction numbers of SHIV-#64 and SHIV-KS661 from intravenous infection (IV) and SHIV-KS661 from intrarectal infection (IR), as well as the antiviral effects of antibodies against SHIV-#64(IV) and SHIV-KS661(IR). We found significant differences between the basic reproduction number of SHIV-#64(IV) or -KS661(IR) and that of SHIV-KS661(IV). We found no clear difference between the antiviral effects of SHIV-#64(IV) and SHIV-KS661(IR), and revealed that an antiviral effect more than 90% of that of maximum antibody responses was induced from initial antibody responses (i.e., antibody response just after its inducement). In conclusion, we found that the basic reproduction number, rather than SHIV strains determines whether systemic CD4+ T cell depletion develops, and the subsequent antibody responses occurs.


Subject(s)
Simian Acquired Immunodeficiency Syndrome , Simian Immunodeficiency Virus , Animals , Antiviral Agents , Humans , Immunity , Macaca mulatta , Viral Load
SELECTION OF CITATIONS
SEARCH DETAIL
...