Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Prosthodont ; 2024 May 24.
Article in English | MEDLINE | ID: mdl-38790151

ABSTRACT

PURPOSE: To evaluate the fracture resistance of chairside computer-aided design and computer-aided manufacturing (CAD-CAM) lithium disilicate mandibular posterior crowns with virgilite of different occlusal thicknesses and compare them to traditional lithium disilicate crowns. MATERIALS AND METHODS: Seventy-five chairside CAD-CAM crowns were fabricated for mandibular right first molars, 60 from novel lithium disilicate with virgilite (CEREC Tessera, Dentsply Sirona), and 15 from traditional lithium disilicate (e.max CAD, Ivoclar Vivadent). These crowns were distributed across five groups based on occlusal thickness and material: Group 1 featured CEREC Tessera crowns with 0.8 mm thickness, Group 2 had 1.0 mm thickness, Group 3 had 1.2 mm thickness, Group 4 with 1.5 mm thickness, and Group 5 included e.max CAD crowns with 1.0 mm thickness. These crowns were luted onto 3D-printed resin dies using Multilink Automix resin cement (Ivoclar Vivadent). Subsequently, they underwent cyclic loading (2,000,000 cycles at 1 Hz with a 275 N force) and loading until fracture. Scanning electron microscopy (SEM) assessed the fractured specimens. Statistical analysis involved one-way ANOVA and the Kruskal-Wallis Test (α = 0.05). RESULTS: Fracture resistance varied significantly (<0.001) across mandibular molar crowns fabricated from chairside CAD-CAM lithium disilicate containing virgilite, particularly between crowns with 0.8 mm and those with 1.2 and 1.5 mm occlusal thickness. However, no significant differences were found when comparing crowns with 1, 1.2, and 1.5 mm thicknesses. CEREC Tessera crowns with 1.5 mm thickness exhibited the highest resistance (2119 N/mm2), followed by those with 1.2 mm (1982 N/mm2), 1.0 mm (1763 N/mm2), and 0.8 mm (1144 N/mm2) thickness, whereas e.max CAD crowns with 1.0 mm occlusal thickness displayed the lowest resistance (814 N/mm2). CONCLUSIONS: The relationship between thickness and fracture resistance in the virgilite lithium disilicate full-coverage crowns was directly proportional, indicating that increased thickness corresponded to higher fracture resistance. No significant differences were noted among crowns with thicknesses ranging from 1 to 1.5 mm. This novel ceramic exhibited superior fracture resistance compared to traditional lithium disilicate.

2.
Am J Dent ; 37(2): 71-77, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38704849

ABSTRACT

PURPOSE: To investigate the effect of painless low-power Er:YAG laser irradiation of conventional and polymer-infiltrated ceramic network (PICN) type CAD-CAM resin-based composites (RBCs) on resin bonding. METHODS: An Er:YAG laser system, phosphoric acid etchant, universal adhesive, RBC, and two types of CAD-CAM RBC block were used. Microtensile bond strength, fracture mode, scanning electron microscopy (SEM) observations of bonding interfaces and CAD-CAM surfaces, and surface roughness of ground and pretreated surfaces were investigated. As pretreatment methods, low-power Er:YAG laser irradiation and air-abrasion with alumina particles were used. RESULTS: The effect of low-power Er:YAG laser irradiation of CAD-CAM RBCs on bonding to repair resin varied depending on the type of CAD-CAM RBCs. CLINICAL SIGNIFICANCE: The low-power Er:YAG laser irradiation of the conventional CAD-CAM RBCs was shown to be effective as a surface pretreatment for resin bonding, while the laser irradiation of PICN-type CAD-CAM RBCs was not effective.


Subject(s)
Composite Resins , Computer-Aided Design , Dental Bonding , Lasers, Solid-State , Microscopy, Electron, Scanning , Surface Properties , Composite Resins/chemistry , Tensile Strength , Materials Testing , Humans , Ceramics/chemistry , Acid Etching, Dental
3.
Materials (Basel) ; 14(23)2021 Nov 28.
Article in English | MEDLINE | ID: mdl-34885437

ABSTRACT

Resin composites employing structural coloration have recently been developed. These resins match to various tooth shades despite being a single paste. To accomplish this, the filler and base resin are tightly bonded, which is thought to provide excellent discoloration resistance. Here, we investigated the surface properties of one of these resins, including the discoloration of the repolished surface. We developed an innovative in vitro method to adjust the repolished surface, in which structural degradation is removed according to scanning electron microscopy (SEM) observation rather than by the naked eye. The resin samples (20 mm (length) × 10 mm (width) × 4 mm (depth)) were manufactured using this resin material. After accelerated aging of the resin by alkaline degradation, the resin was repolished and the discoloration (ΔE*ab), surface roughness (the arithmetic mean roughness (Ra)), and glossiness (the 60° specular) were measured. SEM observation showed that the appearance of the bond between the organic composite filler and base resin on the repolished surface was different from that on the mirror-polished surface. This revealed that according to our in vitro method it was difficult to make the repolished surface structurally identical to the mirror-polished surface. Among the properties of the repolished surface, the degree of discoloration did not change despite the rougher and less glossy surface. It can be concluded that the factors that induce discoloration in this resin composite are independent of the surface roughness and glossiness.

4.
Genes Cells ; 14(6): 669-82, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19422421

ABSTRACT

The Swi1-Swi3 replication fork protection complex and Mrc1 protein are required for stabilization of stalled replication forks in fission yeast. Hsk1 kinase also plays roles in checkpoint responses elicited by arrested replication forks. We show that both Swi1 and Swi3, the abundance of which are interdependent, are required for chromatin association of Mrc1. Co-immunoprecipitation experiments show the interactions of Swi1-Swi3, Mrc1 and Hsk1. Mrc1 interacts with Swi3 and Hsk1 proteins through its central segment (378-879) containing a SQ/TQ cluster, and this segment is sufficient for checkpoint reaction. The SQ/TQ cluster segment (536-673) is essential but not sufficient for the interactions and for resistance to replication inhibitor hydroxyurea. Mrc1 protein level is increased in hsk1-89 cells due to apparent stabilization, and we have identified a potential phosphodegron sequence. These results suggest that interactions of the Swi1-Swi3 complex and Hsk1 kinase with Mrc1 may play a role in cellular responses to stalled replication forks in fission yeast.


Subject(s)
Cell Cycle Proteins/metabolism , DNA-Binding Proteins/metabolism , Protein Serine-Threonine Kinases/metabolism , S Phase/physiology , Schizosaccharomyces pombe Proteins/metabolism , Schizosaccharomyces , Cell Cycle Proteins/genetics , Chromatin/metabolism , DNA-Binding Proteins/genetics , Gene Expression Regulation, Fungal , Immunoprecipitation , Protein Serine-Threonine Kinases/genetics , Schizosaccharomyces/genetics , Schizosaccharomyces/metabolism , Schizosaccharomyces/physiology , Schizosaccharomyces pombe Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...