Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-16869759

ABSTRACT

Most human tumors harbor mutations that misregulate the early phases of the cell cycle. Here, we summarize genetic evidence, mostly obtained in our laboratory using strains of gene-targeted mice, that provides direct experimental support for a role of Cdk4 in tumor development. Moreover, these genetic studies challenge some well-established concepts regarding the role of Cdks during the early phases of the cell cycle. For instance, they have illustrated that Cdk4 and Cdk6 are not essential for cell division during embryonic development except in the hematopoietic system. More surprisingly, mice lacking Cdk2 survive for over 2 years without detectable abnormalities except in their germ cells, indicating that Cdk2 is essential for meiosis but dispensable for the normal mitotic cell cycle. Cdk2 is also dispensable for cell cycle inhibition and tumor suppression by the Cip/Kip inhibitors, p21(Cip1) and p27(Kip1). These observations have important implications not only to understand cell cycle regulation, but also to validate Cdks as potential targets for the development of therapeutic strategies to block proliferation of tumor cells.


Subject(s)
Cell Cycle/genetics , Cell Cycle/physiology , Cyclin-Dependent Kinases/genetics , Mutation , Neoplasms/enzymology , Neoplasms/genetics , Animals , Cyclin-Dependent Kinase 2/deficiency , Cyclin-Dependent Kinase 2/genetics , Cyclin-Dependent Kinase 2/physiology , Cyclin-Dependent Kinase 4/deficiency , Cyclin-Dependent Kinase 4/genetics , Cyclin-Dependent Kinase 4/physiology , Cyclin-Dependent Kinase 6/deficiency , Cyclin-Dependent Kinase 6/genetics , Cyclin-Dependent Kinase 6/physiology , Cyclin-Dependent Kinase Inhibitor p21/physiology , Cyclin-Dependent Kinase Inhibitor p27/physiology , Cyclin-Dependent Kinases/deficiency , Cyclin-Dependent Kinases/physiology , Female , Fetal Death/genetics , Genes, Lethal , Humans , Meiosis , Melanoma, Experimental/enzymology , Melanoma, Experimental/genetics , Melanoma, Experimental/pathology , Mice , Mice, Knockout , Mitosis , Neoplasms/pathology , Pregnancy
2.
J Biol Chem ; 275(31): 24096-105, 2000 Aug 04.
Article in English | MEDLINE | ID: mdl-10918073

ABSTRACT

Tyrosine kinase oncoproteins cause simultaneous activation of multiple intracellular signaling pathways. However, the precise mechanisms by which individual pathways induce oncogenesis are not well understood. We have investigated the roles of individual signaling pathways in v-Src-dependent cell growth and survival by inhibiting one particular pathway. v-Src induced constitutive activation of signal transducers and activators of transcription 3 (STAT3), phosphatidylinositol 3-kinase, and Ras in murine Ba/F3 cells and led to factor-independent proliferation. Dominant-negative mutants of STAT3 (STAT3D) and phosphatidylinositol 3-kinase (Deltap85) inhibited v-Src-dependent growth by approximately 60 and approximately 40%, respectively. Moreover, dominant-negative Ras (N17) induced severe apoptosis, which was accompanied by down-regulation of Bcl-2 and activation of caspase-3. Although cells overexpressing Bcl-2 or caspase-3 inhibitors remained viable even when N17 was expressed, the growth was reduced by approximately 85%. During N17- and STAT3D-induced growth suppression, expression of cyclin D2, cyclin D3, c-myc, and c-fos was suppressed by N17, whereas that of cyclin D2, cyclin E, and c-myc was suppressed by STAT3D. Thus, v-Src-activated Ras and STAT3 are involved in distinct but partly overlapping transcriptional regulation of cell cycle regulatory molecules. These results suggest that the full oncogenic activity of v-Src requires simultaneous activation of multiple signalings, in which Ras is particularly required for survival.


Subject(s)
Cell Transformation, Neoplastic , DNA-Binding Proteins/metabolism , Oncogene Protein pp60(v-src)/metabolism , Trans-Activators/metabolism , ras Proteins/metabolism , Animals , Apoptosis , B-Lymphocytes , Cell Division , Cell Survival , DNA-Binding Proteins/genetics , Down-Regulation , Interleukin-3/pharmacology , Mice , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-bcl-2/biosynthesis , STAT3 Transcription Factor , Signal Transduction , Stem Cells , Trans-Activators/genetics , ras Proteins/genetics
3.
J Biol Chem ; 275(8): 5553-9, 2000 Feb 25.
Article in English | MEDLINE | ID: mdl-10681535

ABSTRACT

At the late phase of megakaryocytopoiesis, megakaryocytes undergo endomitosis, which is characterized by DNA replication without cell division. Although a number of cell cycle regulatory molecules have been identified, the precise roles of these molecules in megakaryocytic endomitosis are largely unknown. In a human interleukin-3-dependent cell line transfected with the thrombopoietin (TPO) receptor c-mpl (F-36P-mpl), either treatment with TPO or the overexpression of activated ras (Ha-Ras(G12V)) induced megakaryocytic maturation with polyploid formation. We found that TPO stimulation or Ha-Ras(G12V) expression led to up-regulation of cyclin D1, cyclin D2, and cyclin D3 expression. In addition, expression levels of cyclin A and cyclin B were reduced during the total course of both TPO- and Ha-Ras(G12V)-induced megakaryocytic differentiation, thereby leading to decreased cdc2 kinase activity. Neither the induced expression of cyclin D1, cyclin D2, or cyclin D3 nor the expression of a dominant negative form of cdc2 alone could induce megakaryocytic differentiation of F-36P-mpl cells. In contrast, overexpression of dominant negative cdc2 together with cyclin D1, cyclin D2, or cyclin D3 facilitated megakaryocytic differentiation in the absence of TPO. These results suggest that both D-type cyclin expression and decreased cdc2 kinase activity may participate in megakaryocytic differentiation.


Subject(s)
CDC2 Protein Kinase/metabolism , Cyclins/physiology , Hematopoietic Stem Cells/cytology , Megakaryocytes/cytology , Thrombopoietin/metabolism , Cell Cycle/drug effects , Cell Differentiation , Cyclin D , Cyclin D1/metabolism , Cyclin D2 , Cyclin D3 , Cyclins/metabolism , DNA, Complementary/metabolism , Flow Cytometry , Genes, Dominant , Humans , Isopropyl Thiogalactoside/pharmacology , Plasmids , Proto-Oncogene Proteins p21(ras)/metabolism , Recombinant Proteins/metabolism , Thrombopoietin/pharmacology , Time Factors , Tumor Cells, Cultured
4.
Blood ; 95(8): 2577-85, 2000 Apr 15.
Article in English | MEDLINE | ID: mdl-10753837

ABSTRACT

The ubiquitin-proteasome pathway is responsible for selective degradation of short-lived cellular proteins and is critical for the regulation of many cellular processes. We previously showed that ubiquitin (Ub) secreted from hairy cell leukemia cells had inhibitory effects on clonogenic growth of normal hematopoietic progenitor cells. In this study, we examined the effects of exogenous Ub on the growth and survival of a series of human hematopoietic cells, including myeloid cell lines (HL-60 and U937), a B-cell line (Daudi), and T-cell lines (KT-3, MT-4, YTC-3, and MOLT-4). Exogenous Ub inhibited the growth of various hematopoietic cell lines tested, especially of KT-3 and HL-60 cells. The growth-suppressive effects of Ub on KT-3 and HL-60 cells were almost completely abrogated by the proteasome inhibitor PSI or MG132, suggesting the involvement of the proteasome pathway in this process. Furthermore, exogenous Ub evoked severe apoptosis of KT-3 and HL-60 cells through the activation of caspase-3. In interleukin-6 (IL-6)-dependent KT-3 cells, STAT3 was found to be conjugated by exogenous biotinylated Ub and to be degraded in a proteasome-dependent manner, whereas expression levels of STAT1, STAT5, or mitogen-activated protein kinase were not affected. Moreover, IL-6-induced the up-regulation of Bcl-2 and c-myc, and JunB was impaired in Ub-treated KT-3 cells, suggesting that the anti-apoptotic and mitogenic effects of IL-6 were disrupted by Ub. These results suggest that extracellular Ub was incorporated into hematopoietic cells and mediated their growth suppression and apoptosis through proteasome-dependent degradation of selective cellular proteins such as STAT3. (Blood. 2000;95:2577-2585)


Subject(s)
Apoptosis/drug effects , Cysteine Endopeptidases/metabolism , DNA-Binding Proteins/metabolism , Hematopoietic Stem Cells/pathology , Interleukin-6/metabolism , Multienzyme Complexes/metabolism , Trans-Activators/metabolism , Ubiquitins/pharmacology , HL-60 Cells , Hematopoietic Stem Cells/drug effects , Hematopoietic Stem Cells/metabolism , Humans , Proteasome Endopeptidase Complex , STAT3 Transcription Factor , Signal Transduction/drug effects , U937 Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...