Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 13(1): 1636, 2022 03 28.
Article in English | MEDLINE | ID: mdl-35347113

ABSTRACT

Filopodia are actin-rich structures, present on the surface of eukaryotic cells. These structures play a pivotal role by allowing cells to explore their environment, generate mechanical forces or perform chemical signaling. Their complex dynamics includes buckling, pulling, length and shape changes. We show that filopodia additionally explore their 3D extracellular space by combining growth and shrinking with axial twisting and buckling. Importantly, the actin core inside filopodia performs a twisting or spinning motion which is observed for a range of cell types spanning from earliest development to highly differentiated tissue cells. Non-equilibrium physical modeling of actin and myosin confirm that twist is an emergent phenomenon of active filaments confined in a narrow channel which is supported by measured traction forces and helical buckles that can be ascribed to accumulation of sufficient twist. These results lead us to conclude that activity induced twisting of the actin shaft is a general mechanism underlying fundamental functions of filopodia.


Subject(s)
Actins , Pseudopodia , Actin Cytoskeleton/metabolism , Actins/metabolism , Motion , Myosins/metabolism , Pseudopodia/metabolism
2.
Biophys J ; 120(18): 3860-3868, 2021 09 21.
Article in English | MEDLINE | ID: mdl-34411578

ABSTRACT

We present a novel fiber finding algorithm (FFA) that will permit researchers to detect and return traces of individual biopolymers. Determining the biophysical properties and structural cues of biopolymers can permit researchers to assess the progression and severity of disease. Confocal microscopy images are a useful method for observing biopolymer structures in three dimensions, but their utility for identifying individual biopolymers is impaired by noise inherent in the acquisition process, including convolution from the point spread function (PSF). The new, iterative FFA we present here 1) measures a microscope's PSF and uses it as a metric for identifying fibers against the background; 2) traces each fiber within a cone angle; and 3) blots out the identified trace before identifying another fiber. Blotting out the identified traces in each iteration allows the FFA to detect and return traces of single fibers accurately and efficiently-even within fiber bundles. We used the FFA to trace unlabeled collagen type I fibers-a biopolymer used to mimic the extracellular matrix in in vitro cancer assays-imaged by confocal reflectance microscopy in three dimensions, enabling quantification of fiber contour length, persistence length, and three-dimensional (3D) mesh size. Based on 3D confocal reflectance microscopy images and the PSF, we traced and measured the fibers to confirm that colder gelation temperatures increased fiber contour length, persistence length, and 3D mesh size-thereby demonstrating the FFA's use in quantifying biopolymers' structural and physical cues from noisy microscope images.


Subject(s)
Algorithms , Imaging, Three-Dimensional , Biopolymers , Collagen Type I , Microscopy, Confocal
3.
Nat Mater ; 20(6): 892-903, 2021 06.
Article in English | MEDLINE | ID: mdl-33495631

ABSTRACT

The basement membrane (BM) is a special type of extracellular matrix and presents the major barrier cancer cells have to overcome multiple times to form metastases. Here we show that BM stiffness is a major determinant of metastases formation in several tissues and identify netrin-4 (Net4) as a key regulator of BM stiffness. Mechanistically, our biophysical and functional analyses in combination with mathematical simulations show that Net4 softens the mechanical properties of native BMs by opening laminin node complexes, decreasing cancer cell potential to transmigrate this barrier despite creating bigger pores. Our results therefore reveal that BM stiffness is dominant over pore size, and that the mechanical properties of 'normal' BMs determine metastases formation and patient survival independent of cancer-mediated alterations. Thus, identifying individual Net4 protein levels within native BMs in major metastatic organs may have the potential to define patient survival even before tumour formation. The ratio of Net4 to laminin molecules determines BM stiffness, such that the more Net4, the softer the BM, thereby decreasing cancer cell invasion activity.


Subject(s)
Basement Membrane/metabolism , Mechanical Phenomena , Neoplasm Metastasis , Biomechanical Phenomena , Cell Line, Tumor , Humans , Netrins/metabolism
4.
Int J Nanomedicine ; 14: 5369-5379, 2019.
Article in English | MEDLINE | ID: mdl-31409993

ABSTRACT

Purpose: Photothermal therapy (PTT) exploits the light-absorbing properties of nanomaterials such as silica-gold nanoshells (NS) to inflict tumor death through local hyperthermia. However, in in vivo studies of PTT, the heat distribution is often found to be heterogeneous throughout the tumor volume, which leaves parts of the tumor untreated and impairs the overall treatment outcome. As this challenges PTT as a one-dose therapy, this study here investigates if giving the treatment repeatedly, ie, fractionated PTT, increases the efficacy in mice bearing subcutaneous tumors. Methods: The NS heating properties were first optimized in vitro and in vivo. Two fractionated PTT protocols, consisting of two and four laser treatments, respectively, were developed and applied in a murine subcutaneous colorectal tumor model. The efficacy of the two fractionated protocols was evaluated both by longitudinal monitoring of tumor growth and, at an early time point, by positron emission tomography (PET) imaging of 18F-labeled glucose analog 18F-FDG. Results: Overall, there were no significant differences in tumor growth and survival between groups of mice receiving single-dose PTT and fractionated PTT in our study. Nonetheless, some animals did experience inhibited tumor growth or even complete tumor disappearance due to fractionated PTT, and these animals also showed a significant decrease in tumor uptake of 18F-FDG after therapy. Conclusion: This study only found an effect of giving PTT to tumors in fractions compared to a single-dose approach in a few animals. However, many factors can affect the outcome of PTT, and reliable tools for optimization of treatment protocol are needed. Despite the modest treatment effect, our results indicate that 18F-FDG PET/CT imaging can be useful to guide the number of treatment sessions necessary.


Subject(s)
Hyperthermia, Induced , Phototherapy , Animals , Cell Line, Tumor , Disease Models, Animal , Dose-Response Relationship, Radiation , Female , Glycerol/chemistry , Gold/chemistry , Hot Temperature , Infrared Rays , Mice, Inbred BALB C , Nanoshells/chemistry , Nanoshells/ultrastructure , Neoplasms/pathology , Neoplasms/therapy , Positron-Emission Tomography , Silicon Dioxide/chemistry , Treatment Outcome , Tumor Burden
5.
Nanotheranostics ; 2(3): 201-210, 2018.
Article in English | MEDLINE | ID: mdl-29868345

ABSTRACT

Rationale: Since its first implementation nanoparticle-assisted photothermal cancer therapy has been studied extensively, although mainly with focus on optimal nanoparticle design. However, development of efficient treatment protocols, as well as reliable and early evaluation tools in vivo, are needed to push the therapy towards clinical translation. Positron emission tomography (PET) is a non-invasive imaging technique that is currently finding extensive use for early evaluation of cancer therapies; an approach that has become of increasing interest due to its great potential for personalized medicine. Methods: In this study, we performed PET imaging to evaluate the treatment response two days after nanoparticle-assisted photothermal cancer therapy in tumor-bearing mice. We used three different tracers; 2'-deoxy-2'-18F-fluoro-D-glucose (18F-FDG), 3'-deoxy-3'-18F-fluorothymidine (18F-FLT), and O-(2'-18F-fluoroethyl)-L-tyrosine (18F-FET) to image and measure treatment induced changes in glucose uptake, cell proliferation, and amino acid transport, respectively. After therapy, tumor growth was monitored longitudinally until endpoint was reached. Results: We found that nanoparticle-assisted photothermal therapy overall inhibited tumor growth and prolonged survival. All three PET tracers had a significant decrease in tumor uptake two days after therapy and these changes correlated with future tumor growth, with 18F-FDG having the most predictive value in this tumor model. Conclusion: This study shows that 18F-FDG, 18F-FLT, and 18F-FET are all robust markers for the treatment response of photothermal therapy, and demonstrate that PET imaging can be used for stratification and optimization of the therapy. Furthermore, having a selection of PET tracers that can reliably measure treatment response is highly valuable as the individual tracer might be excluded in certain applications where physiological processes limit their contrast to background.

6.
Phys Biol ; 15(6): 066004, 2018 07 25.
Article in English | MEDLINE | ID: mdl-29939152

ABSTRACT

Mechanical forces are important factors in the development, coordination and collective motion of cells. Based on a continuum-scale model, we consider the influence of substrate friction on cell motility in confluent living tissue. We test our model on the experimental data of endothelial and cancer cells. In contrast to the commonly used drag friction, we find that solid friction best captures the cell speed distribution. From our model, we quantify a number of measurable physical tissue parameters, such as the ratio between the viscosity and substrate friction.


Subject(s)
Cell Movement , Endothelial Cells/physiology , Friction , Animals , Cell Line , Cell Line, Tumor , Human Umbilical Vein Endothelial Cells , Humans , MCF-7 Cells , Models, Molecular , Viscosity
7.
Sci Rep ; 7: 43800, 2017 03 06.
Article in English | MEDLINE | ID: mdl-28262796

ABSTRACT

Two of the classical hallmarks of cancer are uncontrolled cell division and tissue invasion, which turn the disease into a systemic, life-threatening condition. Although both processes are studied, a clear correlation between cell division and motility of cancer cells has not been described previously. Here, we experimentally characterize the dynamics of invasive and non-invasive breast cancer tissues using human and murine model systems. The intrinsic tissue velocities, as well as the divergence and vorticity around a dividing cell correlate strongly with the invasive potential of the tissue, thus showing a distinct correlation between tissue dynamics and aggressiveness. We formulate a model which treats the tissue as a visco-elastic continuum. This model provides a valid reproduction of the cancerous tissue dynamics, thus, biological signaling is not needed to explain the observed tissue dynamics. The model returns the characteristic force exerted by an invading cell and reveals a strong correlation between force and invasiveness of breast cancer cells, thus pinpointing the importance of mechanics for cancer invasion.


Subject(s)
Algorithms , Cell Movement , Models, Biological , Time-Lapse Imaging/methods , Animals , Breast Neoplasms/pathology , Cell Line, Tumor , Humans , Kinetics , MCF-7 Cells , Mammary Neoplasms, Animal/pathology , Mice , Microscopy, Phase-Contrast , Neoplasm Invasiveness
8.
PLoS One ; 6(9): e25196, 2011.
Article in English | MEDLINE | ID: mdl-21966453

ABSTRACT

Cell adhesion and migration are essential for the evolution, organization, and repair of living organisms. An example of a combination of these processes is the formation of new blood vessels (angiogenesis), which is mediated by a directed migration and adhesion of endothelial cells (ECs). Angiogenesis is an essential part of wound healing and a prerequisite of cancerous tumor growth. We investigated the effect of the amphiphilic compound arachidonic acid (AA) on EC adhesion and migration by combining live cell imaging with biophysical analysis methods. AA significantly influenced both EC adhesion and migration, in either a stimulating or inhibiting fashion depending on AA concentration. The temporal evolution of cell adhesion area was well described by a two-phase model. In the first phase, the spreading dynamics were independent of AA concentration. In the latter phase, the spreading dynamics increased at low AA concentrations and decreased at high AA concentrations. AA also affected EC migration; though the instantaneous speed of individual cells remained independent of AA concentration, the individual cells lost their sense of direction upon addition of AA, thus giving rise to an overall decrease in the collective motion of a confluent EC monolayer into vacant space. Addition of AA also caused ECs to become more elongated, this possibly being related to incorporation of AA in the EC membrane thus mediating a change in the viscosity of the membrane. Hence, AA is a promising non-receptor specific regulator of wound healing and angiogenesis.


Subject(s)
Arachidonic Acid/pharmacology , Cell Adhesion/drug effects , Cell Movement/drug effects , Endothelial Cells/cytology , Endothelial Cells/drug effects , Endothelium, Vascular/cytology , Animals , Cells, Cultured , Swine
9.
Biophys J ; 93(11): 4068-75, 2007 Dec 01.
Article in English | MEDLINE | ID: mdl-17704145

ABSTRACT

Tethers were created between a living Escherichia coli bacterium and a bead by unspecifically attaching the bead to the outer membrane and pulling it away using optical tweezers. Upon release, the bead returned to the bacterium, thus showing the existence of an elastic tether between the bead and the bacterium. These tethers can be tens of microns long, several times the bacterial length. Using mutants expressing different parts of the outer membrane structure, we have shown that an intact core lipopolysaccharide is a necessary condition for tether formation, regardless of whether the beads were uncoated polystyrene or beads coated with lectin. A physical characterization of the tethers has been performed yielding visco-elastic tether force-extension relationships: for first pull tethers, a spring constant of 10-12 pN/mum describes the tether visco-elasticity, for subsequent pulls the spring constant decreases to 6-7 pN/mum, and typical relaxation timescales of hundreds of seconds are observed. Studies of tether stability in the presence of proteases, lipases, and amylases lead us to propose that the extracted tether is primarily composed of the asymmetric lipopolysaccharide containing bilayer of the outer membrane. This unspecific tethered attachment mechanism could be important in the initiation of bacterial adhesion.


Subject(s)
Bacterial Adhesion/physiology , Cell Surface Extensions/chemistry , Cell Surface Extensions/physiology , Escherichia coli/chemistry , Escherichia coli/physiology , Elasticity , Optical Tweezers , Viscosity
SELECTION OF CITATIONS
SEARCH DETAIL
...