Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
Add more filters










Publication year range
1.
Biomolecules ; 14(6)2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38927069

ABSTRACT

The management of gastrointestinal disease in animals represents a significant challenge in veterinary and zootechnic practice. Traditionally, acute symptoms have been treated with antibiotics and high doses of zinc oxide (ZnO). However, concerns have been raised regarding the potential for microbial resistance and ecological detriment due to the excessive application of this compound. These concerns highlight the urgency of minimizing the use of ZnO and exploring sustainable nutritional solutions. Hydrolysable tannins (HTs), which are known for their role in traditional medicine for acute gastrointestinal issues, have emerged as a promising alternative. This study examined the combined effect of food-grade HTs and subtherapeutic ZnO concentration on relevant biological functions of Caco-2 cells, a widely used model of the intestinal epithelial barrier. We found that, when used together, ZnO and HTs (ZnO/HTs) enhanced tissue repair and improved epithelial barrier function, normalizing the expression and functional organization of tight junction proteins. Finally, the ZnO/HTs combination strengthened enterocytes' defense against oxidative stress induced by inflammation stimuli. In conclusion, combining ZnO and HTs may offer a suitable and practical approach for decreasing ZnO levels in veterinary nutritional applications.


Subject(s)
Enterocytes , Hydrolyzable Tannins , Zinc Oxide , Zinc Oxide/pharmacology , Zinc Oxide/chemistry , Caco-2 Cells , Enterocytes/drug effects , Enterocytes/metabolism , Humans , Hydrolyzable Tannins/pharmacology , Hydrolyzable Tannins/chemistry , Oxidative Stress/drug effects , Tight Junction Proteins/metabolism
2.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1869(7): 159524, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38857757

ABSTRACT

Neuroinflammation is a hallmark of several neurodegenerative disorders that has been extensively studied in recent years. Microglia, the primary immune cells of the central nervous system (CNS), are key players in this physiological process, demonstrating a remarkable adaptability in responding to various stimuli in the eye and the brain. Within the complex network of neuroinflammatory signals, the fatty acid N-ethanolamines, in particular N-arachidonylethanolamine (anandamide, AEA), emerged as crucial regulators of microglial activity under both physiological and pathological states. In this study, we interrogated for the first time the impact of the signaling of these bioactive lipids on microglial cell responses to a sub-lethal acute UVB radiation, a physical stressor responsible of microglia reactivity in either the retina or the brain. To this end, we developed an in vitro model using mouse microglial BV-2 cells. Upon 24 h of UVB exposure, BV-2 cells showed elevated oxidative stress markers and, cyclooxygenase (COX-2) expression, enhanced phagocytic and chemotactic activities, along with an altered immune profiling. Notably, UVB exposure led to a selective increase in expression and activity of fatty acid amide hydrolase (FAAH), the main enzyme responsible for degradation of fatty acid ethanolamides. Pharmacological FAAH inhibition via URB597 counteracted the effects of UVB exposure, decreasing tumor necrosis factor α (TNF-α) and nitric oxide (NO) release and reverting reactive oxidative species (ROS), interleukin-1ß (IL-1ß), and interleukin-10 (IL-10) levels to the control levels. Our findings support the potential of enhanced fatty acid amide signaling in mitigating UVB-induced cellular damage, paving the way to further exploration of these lipids in light-induced immune responses.

3.
FASEB J ; 38(10): e23675, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38801406

ABSTRACT

Resolution of inflammation is the cellular and molecular process that protects from widespread and uncontrolled inflammation and restores tissue function in the aftermath of acute immune events. This process is orchestrated by specialized pro-resolving mediators (SPM), a class of bioactive lipids able to reduce immune activation and promote removal of tissue debris and apoptotic cells by macrophages. Although SPMs are the lipid class that has been best studied for its role in facilitating the resolution of self-limited inflammation, a number of other lipid signals, including endocannabinoids, also exert protective immunomodulatory effects on immune cells, including macrophages. These observations suggest that endocannabinoids may also display pro-resolving actions. Interestingly, the endocannabinoid anandamide (AEA) is not only known to bind canonical type 1 and type 2 cannabinoid receptors (CB1 and CB2) but also to engage SPM-binding receptors such as GPR18. This suggests that AEA may also contribute to the governing of resolution processes. In order to interrogate this hypothesis, we investigated the ability of AEA to induce pro-resolving responses by classically-activated primary human monocyte-derived macrophages (MoDM). We found that AEA, at nanomolar concentration, enhances efferocytosis in MoDMs in a CB2- and GPR18-dependent manner. Using lipid mediator profiling, we also observed that AEA modulates SPM profiles in these cells, including levels of resolvin (Rv)D1, RvD6, maresin (MaR)2, and RvE1 in a CB2-dependent manner. AEA treatment also modulated the gene expression of SPM enzymes involved in both the formation and further metabolism of SPM such as 5-lipoxygenase and 15-Prostaglandin dehydrogenase. Our findings show, for the first time, a direct effect of AEA on the regulation of pro-resolving pathways in human macrophages. They also provide new insights into the complex interactions between different lipid pathways in activation of pro-resolving responses contributing to the reestablishment of homeostasis in the aftermath of acute inflammation.


Subject(s)
Arachidonic Acids , Endocannabinoids , Macrophages , Polyunsaturated Alkamides , Receptor, Cannabinoid, CB2 , Receptors, G-Protein-Coupled , Humans , Endocannabinoids/metabolism , Endocannabinoids/pharmacology , Receptor, Cannabinoid, CB2/metabolism , Receptor, Cannabinoid, CB2/genetics , Polyunsaturated Alkamides/pharmacology , Polyunsaturated Alkamides/metabolism , Arachidonic Acids/pharmacology , Arachidonic Acids/metabolism , Macrophages/metabolism , Macrophages/drug effects , Receptors, G-Protein-Coupled/metabolism , Inflammation/metabolism , Cells, Cultured , Signal Transduction/drug effects , Docosahexaenoic Acids/pharmacology , Docosahexaenoic Acids/metabolism , Arachidonate 5-Lipoxygenase/metabolism
4.
Brain Sci ; 13(8)2023 Jul 29.
Article in English | MEDLINE | ID: mdl-37626494

ABSTRACT

N-palmitoylethanolamine (PEA) plays a key role in preventing Aß-mediated neuroinflammation and neurotoxicity in murine models. It has been demonstrated that PEA provides anti-neuroinflammatory, pain-relieving and neuroprotective actions even in humans. In this project, we aim to evaluate these anti-neuroinflammatory effects via the cognitive evaluation and biochemical analyses of a 12-month oral administration of PEA in subjects with mild cognitive impairment (MCI). Subjects with MCI will be randomized to placebo or PEA groups, and followed for another 6 months. Cognitive abilities and neurological inflammation will be examined at baseline and after treatment. The specific objectives of the project are to ascertain whether: (i) PEA influences the scores of the neuropsychological and behavioral evaluations after one-year treatment, comparing PEA-treated and placebo subjects in both MCI and control groups; (ii) PEA can change the inflammatory and neuronal damage markers of blood and urine in MCI subjects; and (iii) these changes correlate with the clinical scores of participating subjects.

5.
Prog Lipid Res ; 91: 101239, 2023 07.
Article in English | MEDLINE | ID: mdl-37385352

ABSTRACT

Dentate gyrus of the hippocampus continuously gives rise to new neurons, namely, adult-born granule cells, which contribute to conferring plasticity to the mature brain throughout life. Within this neurogenic region, the fate and behavior of neural stem cells (NSCs) and their progeny result from a complex balance and integration of a variety of cell-autonomous and cell-to-cell-interaction signals and underlying pathways. Among these structurally and functionally diverse signals, there are endocannabinoids (eCBs), the main brain retrograde messengers. These pleiotropic bioactive lipids can directly and/or indirectly influence adult hippocampal neurogenesis (AHN) by modulating, both positively and negatively, multiple molecular and cellular processes in the hippocampal niche, depending on the cell type or stage of differentiation. Firstly, eCBs act directly as cell-intrinsic factors, cell-autonomously produced by NSCs following their stimulation. Secondly, in many, if not all, niche-associated cells, including some local neuronal and nonneuronal elements, the eCB system indirectly modulates the neurogenesis, linking neuronal and glial activity to regulating distinct stages of AHN. Herein, we discuss the crosstalk of the eCB system with other neurogenesis-relevant signal pathways and speculate how the hippocampus-dependent neurobehavioral effects elicited by (endo)cannabinergic medications are interpretable in light of the key regulatory role that eCBs play on AHN.


Subject(s)
Endocannabinoids , Hippocampus , Adult , Humans , Hippocampus/physiology , Neurogenesis/physiology , Neurons/physiology , Signal Transduction
6.
Int J Mol Sci ; 24(7)2023 Apr 03.
Article in English | MEDLINE | ID: mdl-37047663

ABSTRACT

Dysfunctional phenotype of microglia, the primary brain immune cells, may aggravate Alzheimer's disease (AD) pathogenesis by releasing proinflammatory factors, such as nitric oxide (NO). The endocannabinoids N-arachidonoylethanolamine (AEA) and 2-arachidonoylglycerol (2-AG) are bioactive lipids increasingly recognised for their essential roles in regulating microglial activity both under normal and AD-driven pathological conditions. To investigate the possible impact of chronic exposure to ß-amyloid peptides (Aß) on the microglial endocannabinoid signalling, we characterised the functional expression of the endocannabinoid system on neonatal microglia isolated from wild-type and Tg2576 mice, an AD-like model, which overexpresses Aß peptides in the developing brain. We found that Aß-exposed microglia produced 2-fold more 2-AG than normal microglia. Accordingly, the expression levels of diacylglycerol lipase-α (DAGLα) and monoacylglycerol lipase (MAGL), the main enzymes responsible for synthesising and hydrolysing 2-AG, respectively, were consistently modified in Tg2576 microglia. Furthermore, compared to wild-type cells, transgenic microglia basally showed increased expression of the cannabinoid 2 receptor, typically upregulated in an activated proinflammatory phenotype. Indeed, following inflammatory stimulus, Aß-exposed microglia displayed an enhanced production of NO, which was abolished by pharmacological inhibition of DAGLα. These findings suggested that exposure to Aß polarises microglial cells towards a pro-AD phenotype, possibly by enhancing 2-AG signalling.


Subject(s)
Alzheimer Disease , Microglia , Mice , Animals , Microglia/metabolism , Endocannabinoids/metabolism , Signal Transduction/physiology , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Receptors, Cannabinoid/metabolism , Mice, Transgenic
7.
Talanta ; 257: 124392, 2023 May 15.
Article in English | MEDLINE | ID: mdl-36863295

ABSTRACT

The present study encompasses the development of a fast and reliable analytical method to quantify the main endocannabinoids and some of their conjugated congeners, particularly N-arachidonoyl amino acids, in brain tissue. Samples were homogenized and a micro solid phase extraction (µSPE) procedure was developed for brain homogenate clean-up. Miniaturized SPE was selected as it allowed to work with reduced sample amounts, while maintaining high sensitivity; this last feature was mandatory due to the low concentration of endocannabinoids in biological matrices that makes their determination a challenging analytical task. UHPLC-MS/MS was used for the analysis as it provided a great sensitivity, especially for conjugated forms that were detected by negative ionization. Polarity switching was applied during the run; low limits of quantification were between 0.003 ng g-1 and 0.5 ng g-1. This method provided also low matrix effect (lower than 30%) and good extraction recoveries in the brain. To the best of our knowledge, this is the first time that µSPE is applied on this matrix for this class of compounds. The method was validated according to international guidelines, and then tested on real cerebellum samples from mice, which were sub-chronically treated with URB597, a well-known inhibitor of the fatty acid amide hydrolase.


Subject(s)
Endocannabinoids , Tandem Mass Spectrometry , Animals , Mice , Chromatography, High Pressure Liquid/methods , Endocannabinoids/chemistry , Tandem Mass Spectrometry/methods , Solid Phase Extraction/methods , Brain
8.
Methods Mol Biol ; 2576: 201-211, 2023.
Article in English | MEDLINE | ID: mdl-36152188

ABSTRACT

The wide distribution of the endocannabinoid system (ECS) throughout the body and its pivotal pathophysiological role offer promising opportunities for the development of novel therapeutic drugs for treating several diseases. However, the need for strategies to circumvent the unwanted psychotropic and immunosuppressive effects associated with cannabinoid receptor agonism/antagonism has led to considerable research in the field of molecular alternatives, other than type-1 and type-2 (CB1/2) receptors, as therapeutic targets to indirectly manipulate this pro-homeostatic system. In this context, the use of selective inhibitors of proteins involved in endocannabinoid (eCB) transport and metabolism allows for an increase or decrease of the levels of N-arachidonoylethanolamine (AEA) and 2-arachidonoylglycerol (2-AG) in the sites where these major eCBs are indeed needed. This chapter will briefly review some preclinical and clinical evidence for the therapeutic potential of ECS pharmacological manipulation.


Subject(s)
Endocannabinoids , Endocannabinoids/metabolism , Receptors, Cannabinoid/metabolism
9.
Methods Mol Biol ; 2576: 425-436, 2023.
Article in English | MEDLINE | ID: mdl-36152207

ABSTRACT

Understanding the correct interaction among the different components of the endocannabinoid (eCB) system is fundamental for a proper assessment of the function of eCBs as signaling molecules. The knowledge of how the membrane environment modulates the intracellular trafficking of the eCB system and its interacting proteins holds a huge potential in unraveling new mechanisms of its modulation. This chapter deals with the application of fluorescence resonance energy transfer technique to measure the binding affinity of eCB proteins to model membranes (i.e., large unilamellar vesicles, LUVs). In particular, we describe in detail the paradigmatic example of the interaction of rat recombinant fatty acid amide hydrolase with LUVs constituted of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine.


Subject(s)
Endocannabinoids , Unilamellar Liposomes , Animals , Fluorescence Resonance Energy Transfer , Protein Binding , Rats , Unilamellar Liposomes/metabolism
10.
Methods Mol Biol ; 2576: 453-459, 2023.
Article in English | MEDLINE | ID: mdl-36152209

ABSTRACT

A still unsolved, although critical, issue in endocannabinoid research is the mechanism by which the lipophilic anandamide (AEA) moves from its site of synthesis, crosses the aqueous milieu, and reaches the different intracellular membrane compartments, where its metabolic and signaling pathways take place. The difficulty of studying intracellular AEA transport and distribution results from the lack of specific probes and techniques to track and visualize this bioactive lipid within the cells. Herein, we describe the use of a biotinylated, non-hydrolyzable derivative of AEA (biotin-AEA, b-AEA) for visualizing the subcellular distribution of this endocannabinoid by means of confocal fluorescence microscopy.


Subject(s)
Biotin , Endocannabinoids , Biological Transport , Biotin/metabolism , Endocannabinoids/metabolism , Microscopy, Confocal , Microscopy, Fluorescence , Polyunsaturated Alkamides/metabolism
11.
J Cell Physiol ; 237(12): 4563-4579, 2022 12.
Article in English | MEDLINE | ID: mdl-36322609

ABSTRACT

The loss of NPC1 or NPC2 function results in cholesterol and sphingolipid dyshomeostasis that impairs developmental trajectories, predisposing the postnatal brain to the appearance of pathological signs, including progressive and stereotyped Purkinje cell loss and microgliosis. Despite increasing evidence reporting the activation of pro-inflammatory microglia as a cardinal event of NPC1 disease progression at symptomatic stages both in patients and preclinical models, how microglia cells respond to altered neurodevelopmental dynamics remains not completely understood. To gain an insight on this issue, we have characterized patterns of microglia activation in the early postnatal cerebellum and young adult olfactory bulb of the hypomorphic Npc1nmf164 mouse model. Previous evidence has shown that both these areas display a number of anomalies affecting neuron and glial cell proliferation and differentiation, which largely anticipate cellular changes and clinical signs, raising our interest on how microglia interplay to these changes. Even so, to separate the contribution of cues provided by the dysfunctional microenvironment we have also studied microglia isolated from mice of increasing ages and cultured in vitro for 1 week. Our findings show that microglia of both cerebellum and olfactory bulb of Npc1nmf164 mice adopt an activated phenotype, characterized by increased cell proliferation, enlarged soma size and de-ramified processes, as well as a robust phagocytic activity, in a time- and space-specific manner. Enhanced phagocytosis associates with a profound remodeling of gene expression signatures towards gene products involved in chemotaxis, cell recognition and engulfment, including Cd68 and Trem2. These early changes in microglia morphology and activities are induced by region-specific developmental anomalies that likely anticipate alterations in neuronal connectivity. As a proof of concept, we show that microglia activation within the granule cell layer and glomerular layer of the olfactory bulb of Npc1nmf164 mice is associated with shortfalls in fine odor discrimination.


Subject(s)
Microglia , Niemann-Pick Disease, Type C , Olfactory Perception , Animals , Mice , Brain/metabolism , Disease Models, Animal , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Membrane Glycoproteins/metabolism , Microglia/metabolism , Niemann-Pick C1 Protein/metabolism , Niemann-Pick Disease, Type C/metabolism , Odorants , Receptors, Immunologic/metabolism , Phagocytes/metabolism
12.
Cells ; 11(7)2022 04 06.
Article in English | MEDLINE | ID: mdl-35406803

ABSTRACT

Chronic inflammation in Alzheimer's disease (AD) has been recently identified as a major contributor to disease pathogenesis. Once activated, microglial cells, which are brain-resident immune cells, exert several key actions, including phagocytosis, chemotaxis, and the release of pro- or anti-inflammatory mediators, which could have opposite effects on brain homeostasis, depending on the stage of disease and the particular phenotype of microglial cells. The endocannabinoids (eCBs) are pleiotropic bioactive lipids increasingly recognized for their essential roles in regulating microglial activity both under normal and AD-driven pathological conditions. Here, we review the current literature regarding the involvement of this signalling system in modulating microglial phenotypes and activity in the context of homeostasis and AD-related neurodegeneration.


Subject(s)
Alzheimer Disease , Microglia , Alzheimer Disease/pathology , Endocannabinoids , Humans , Microglia/pathology , Phagocytosis , Signal Transduction
13.
Theriogenology ; 172: 88-94, 2021 Sep 15.
Article in English | MEDLINE | ID: mdl-34146973

ABSTRACT

Sperm cryopreservation represents a powerful tool for horse breeding. To improve the efficiency of artificial insemination in the horse using cryopreserved spermatozoa, an adequate understanding of the underlying biophysical properties that affect sperm cryosurvival needs to be reached yet. In this pilot study, we described isolation and analysis of the main fatty acids from sperms of stallions classified as good and poor freezers (7 GF and 5 PF, according to sperm motility and viability, before and after cryopreservation). Fatty acid profiles were only assessed in pre-thaw sperms. Eight main fatty acids were identified, using gas chromatography, and their contents were expressed as percentage of the total lipid content. We found that lauric, myristic and oleic acid (C12:0, C14:0 and C18:1n9c) turned out to be about 2-fold more abundant in the sperm cells of the GFs compared with PFs. Moreover, we described for the first time the presence of a very high amount of a trans geometrical isomer of linoleic acid, linolelaidic acid (C18:2n6t), in pre-thaw PF spermatozoa. Notably, we found in fresh sperms of PF stallions a ratio of unsaturated fatty acids to saturated fatty acids which was twice that of those of GF group, suggesting a positive effect of a high saturated-to-unsaturated fatty acid ratio for the "freezability" of equine spermatozoa. Finally, principal component analysis (PCA) confirmed the relationships between specific fatty acids and cryotolerance of equine spermatozoa, also providing a graphical classification and additional information about the dominant variables governing the classification process.


Subject(s)
Fatty Acids , Semen Preservation , Animals , Cryopreservation/veterinary , Horses , Male , Pilot Projects , Semen Preservation/veterinary , Sperm Motility , Spermatozoa
14.
Front Vet Sci ; 8: 655311, 2021.
Article in English | MEDLINE | ID: mdl-34124221

ABSTRACT

Chronic enteropathies (CEs) in dogs, according to the treatment response to consecutive trials, are classified as food-responsive (FRE), antibiotic-responsive (ARE), and immunosuppressive-responsive (IRE) enteropathy. In addition to this classification, dogs with loss of protein across the gut are grouped as protein-losing enteropathy (PLE). At present, the diagnosis of CEs is time-consuming, costly and sometimes invasive, also because non-invasive biomarkers with high sensitivity and specificity are not yet available. Therefore, this study aimed at assessing the levels of circulating endocannabinoids in plasma as potential diagnostic markers of canine CEs. Thirty-three dogs with primary chronic gastrointestinal signs presented to Veterinary Teaching Hospitals of Teramo and Bologna (Italy) were prospectively enrolled in the study, and 30 healthy dogs were included as a control group. Plasma levels of N-arachidonoylethanolamine (AEA), 2-arachidonoylglycerol (2-AG), N-palmitoylethanolamine (PEA), and N-oleoylethanolamine (OEA) were measured at the time of the first visit in dogs with different CEs, as well as in healthy subjects. Plasma levels of 2-AG (p = 0.001) and PEA (p = 0.008) were increased in canine CEs compared to healthy dogs. In particular, PEA levels were increased in the FRE group compared to healthy dogs (p = 0.04), while 2-AG was higher in IRE than in healthy dogs (p = 0.0001). Dogs affected by FRE also showed decreased 2-AG (p = 0.0001) and increased OEA levels (p = 0.0018) compared to IRE dogs. Moreover, dogs with PLE showed increased 2-AG (p = 0.033) and decreased AEA (p = 0.035), OEA (p = 0.016) and PEA (p = 0.023) levels, when compared to dogs affected by CEs without loss of proteins. The areas under ROC curves for circulating 2-AG (0.91; 95% confidence interval [CI], 0.79-1.03) and OEA (0.81; 95% CI, 0.65-0.97) showed a good accuracy in distinguishing the different forms of CEs under study (FRE, ARE and IRE), at the time of the first visit. The present study demonstrated that endocannabinoid signaling is altered in canine CEs, and that CE subtypes showed distinct profiles of 2-AG, PEA and OEA plasma levels, suggesting that these circulating bioactive lipids might have the potential to become candidate biomarkers for canine CEs.

15.
Biomolecules ; 11(4)2021 03 26.
Article in English | MEDLINE | ID: mdl-33810505

ABSTRACT

Growing evidence shows that the immune system is critically involved in Alzheimer's disease (AD) pathogenesis and progression. The modulation and targeting of peripheral immune mechanisms are thus promising therapeutic or preventive strategies for AD. Given the critical involvement of the endocannabinoid (eCB) system in modulating immune functions, we investigated the potential role of the main elements of such a system, namely type-1 and type-2 cannabinoid receptors (CB1 and CB2), and fatty acid amide hydrolase (FAAH), in distinct immune cell populations of the peripheral blood of AD patients. We found that, compared to healthy controls, CB1 and CB2 expression was significantly lower in the B-lymphocytes of AD patients. Moreover, we found that CB2 was significantly lower and FAAH was significantly higher in monocytes of the same subjects. In contrast, T-lymphocytes and NK cells did not show any variation in any of these proteins. Of note, monocytic CB2 and FAAH levels significantly correlated with clinical scores. Furthermore, the pharmacological inactivation of FAAH in monocytes and monocyte-derived macrophages obtained from AD patients was able to modulate their immune responses, by reducing production of pro-inflammatory cytokines such as TNF-α, IL-6 and IL-12, and enhancing that of the anti-inflammatory cytokine IL-10. Furthermore, FAAH blockade skewed AD monocyte-derived macrophages towards a more anti-inflammatory and pro-resolving phenotype. Collectively, our findings highlight a central role of FAAH in regulating AD monocytes/macrophages that could be of value in developing novel monocyte-centered therapeutic approaches aimed at promoting a neuroprotective environment.


Subject(s)
Alzheimer Disease/pathology , Amidohydrolases/metabolism , Macrophages/metabolism , Aged , Amidohydrolases/antagonists & inhibitors , Benzamides/pharmacology , Carbamates/pharmacology , Female , Humans , Interleukin-6/metabolism , Leukocytes, Mononuclear/cytology , Leukocytes, Mononuclear/metabolism , Lipopolysaccharides/pharmacology , Macrophages/cytology , Macrophages/drug effects , Male , Middle Aged , Receptor, Cannabinoid, CB1/metabolism , Receptor, Cannabinoid, CB2/metabolism , Tumor Necrosis Factor-alpha/metabolism
16.
Adv Drug Deliv Rev ; 159: 133-169, 2020.
Article in English | MEDLINE | ID: mdl-32628989

ABSTRACT

Endogenous bioactive lipids are part of a complex network that modulates a plethora of cellular and molecular processes involved in health and disease, of which inflammation represents one of the most prominent examples. Inflammation serves as a well-conserved defence mechanism, triggered in the event of chemical, mechanical or microbial damage, that is meant to eradicate the source of damage and restore tissue function. However, excessive inflammatory signals, or impairment of pro-resolving/anti-inflammatory pathways leads to chronic inflammation, which is a hallmark of chronic pathologies. All main classes of endogenous bioactive lipids - namely eicosanoids, specialized pro-resolving lipid mediators, lysoglycerophopsholipids and endocannabinoids - have been consistently involved in the chronic inflammation that characterises pathologies such as cancer, diabetes, atherosclerosis, asthma, as well as autoimmune and neurodegenerative disorders and inflammatory bowel diseases. This review gathers the current knowledge concerning the involvement of endogenous bioactive lipids in the pathogenic processes of chronic inflammatory pathologies.


Subject(s)
Inflammation/metabolism , Lipid Metabolism , Animals , Chronic Disease , Humans , Inflammation/therapy , Lipids
17.
Sci Rep ; 10(1): 5903, 2020 Mar 31.
Article in English | MEDLINE | ID: mdl-32235840

ABSTRACT

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

18.
Sci Rep ; 10(1): 2292, 2020 02 10.
Article in English | MEDLINE | ID: mdl-32041998

ABSTRACT

Fatty acid amide hydrolase (FAAH) is a membrane-bound homodimeric enzyme that in vivo controls content and biological activity of N-arachidonoylethanolamine (AEA) and other relevant bioactive lipids termed endocannabinoids. Parallel orientation of FAAH monomers likely allows both subunits to simultaneously recruit and cleave substrates. Here, we show full inhibition of human and rat FAAH by means of enzyme inhibitors used at a homodimer:inhibitor stoichiometric ratio of 1:1, implying that occupation of only one of the two active sites of FAAH is enough to fully block catalysis. Single W445Y substitution in rat FAAH displayed the same activity as the wild-type, but failed to show full inhibition at the homodimer:inhibitor 1:1 ratio. Instead, F432A mutant exhibited reduced specific activity but was fully inhibited at the homodimer:inhibitor 1:1 ratio. Kinetic analysis of AEA hydrolysis by rat FAAH and its F432A mutant demonstrated a Hill coefficient of ~1.6, that instead was ~1.0 in the W445Y mutant. Of note, also human FAAH catalysed an allosteric hydrolysis of AEA, showing a Hill coefficient of ~1.9. Taken together, this study demonstrates an unprecedented allosterism of FAAH, and represents a case of communication between two enzyme subunits seemingly controlled by a single amino acid (W445) at the dimer interface. In the light of extensive attempts and subsequent failures over the last decade to develop effective drugs for human therapy, these findings pave the way to the rationale design of new molecules that, by acting as positive or negative heterotropic effectors of FAAH, may control more efficiently its activity.


Subject(s)
Amidohydrolases/metabolism , Benzamides/pharmacology , Carbamates/pharmacology , Endocannabinoids/metabolism , Protein Subunits/metabolism , Allosteric Regulation/drug effects , Allosteric Site/drug effects , Allosteric Site/genetics , Amidohydrolases/antagonists & inhibitors , Amidohydrolases/chemistry , Amidohydrolases/genetics , Animals , Arachidonic Acids , Biocatalysis/drug effects , Catalytic Domain/drug effects , Catalytic Domain/genetics , Drug Design , Enzyme Assays , Humans , Hydrolysis/drug effects , Kinetics , Molecular Dynamics Simulation , Mutation , Polyunsaturated Alkamides , Protein Subunits/antagonists & inhibitors , Protein Subunits/chemistry , Protein Subunits/genetics , Rats
19.
Curr Opin Pharmacol ; 50: 25-32, 2020 02.
Article in English | MEDLINE | ID: mdl-31864101

ABSTRACT

The endocannabinoid system (eCB) is a ubiquitous lipid signaling system composed of at least two receptors, their endogenous ligands, and the enzymes responsible for their synthesis and degradation. Within the brain, the eCB system is highly expressed in the hippocampus and controls basic biological processes, including neuronal proliferation, migration and differentiation, which are intimately linked with embryonal neurogenesis. Accumulated preclinical evidence has indicated that eCBs play a major role also in regulating adult neurogenesis. Increased cannabinoid receptor activity, either by increased eCB content or by pharmacological blockade of their degradation, produces neurogenic effects alongside rescue of phenotypes in animal models of different psychiatric and neurological disorders. Therefore, in the light of the higher therapeutic potential of adult neurogenesis compared to the embryonic one, here we sought to summarize the most recent evidence pointing towards a neurogenic role for eCBs in the adult brain, both under normal and pathological conditions.


Subject(s)
Endocannabinoids , Neurogenesis , Adult , Animals , Humans
20.
Sci Rep ; 9(1): 15155, 2019 10 22.
Article in English | MEDLINE | ID: mdl-31641194

ABSTRACT

We investigated the cellular and molecular mechanisms by which bindarit, a small indazolic derivative with prominent anti-inflammatory effects, exerts its immunoregulatory activity in lipopolysaccharide (LPS) stimulated human monocytic cells. We found that bindarit differentially regulates the release of interleukin-8 (IL-8) and monocyte chemoattractant protein-1 (MCP-1), enhancing the release of IL-8 and reducing that of MCP-1. These effects specifically required a functional interaction between bindarit and fatty acid binding protein 4 (FABP4), a lipid chaperone that couples intracellular lipid mediators to their biological targets and signaling pathways. We further demonstrated that bindarit can directly interact with FABP4 by increasing its expression and nuclear localization, thus impacting on peroxisome proliferator-activated receptor γ (PPARγ) and LPS-dependent kinase signaling. Taken together, these findings suggest a potential key-role of FABP4 in the immunomodulatory activity of bindarit, and extend the spectrum of its possible therapeutic applications to FABP4 modulation.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Fatty Acid-Binding Proteins/metabolism , Indazoles/pharmacology , Monocytes/metabolism , Propionates/pharmacology , Active Transport, Cell Nucleus/drug effects , Anti-Inflammatory Agents/chemistry , Cell Line , Cell Nucleus/drug effects , Cell Nucleus/metabolism , Chemokine CCL2/metabolism , Fatty Acid-Binding Proteins/chemistry , Fatty Acid-Binding Proteins/genetics , Humans , Immunologic Factors/pharmacology , Indazoles/chemistry , Interleukin-8/metabolism , Lipopolysaccharides , Models, Biological , Monocytes/drug effects , PPAR gamma/metabolism , Propionates/chemistry , Protein Binding/drug effects , Up-Regulation/drug effects , p38 Mitogen-Activated Protein Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...