Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 81
Filter
1.
J Thromb Haemost ; 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38838952

ABSTRACT

BACKGROUND: The thrombin generation assay (TGA) evaluates the potential of plasma to generate thrombin over time, providing a global picture of an individual's hemostatic balance. OBJECTIVES: This study aimed to identify novel biological determinants of thrombin generation using a multiomics approach. METHODS: Associations between TGA parameters and plasma levels of 377 antibodies targeting 236 candidate proteins for cardiovascular risk were tested using multiple linear regression analysis in 770 individuals with venous thrombosis from the Marseille Thrombosis Association (MARTHA) study. Proteins associated with at least 3 TGA parameters were selected for validation in an independent population of 536 healthy individuals (Etablissement Français du Sang Alpes-Méditerranée [EFS-AM]). Proteins with strongest associations in both groups underwent additional genetic analyses and in vitro experiments. RESULTS: Eighteen proteins were associated (P < 1.33 × 10⁻4) with at least 3 TGA parameters in MARTHA, among which 13 demonstrated a similar pattern of associations in EFS-AM. Complement proteins C5 and C9 had the strongest associations in both groups. Ex vivo supplementation of platelet-poor plasma with purified C9 protein had a significant dose-dependent effect on TGA parameters. No effect was observed with purified C5. Several single nucleotide polymorphisms associated with C5 and C9 plasma levels were identified, with the strongest association for the C5 missense variant rs17611, which was associated with a decrease in C5 levels, endogenous thrombin potential, and peak in MARTHA. No association of this variant with TGA parameters was observed in EFS-AM. CONCLUSION: This study identified complement proteins C5 and C9 as potential determinants of thrombin generation. Further studies are warranted to establish causality and elucidate the underlying mechanisms.

2.
J Immunol ; 212(1): 117-129, 2024 01 01.
Article in English | MEDLINE | ID: mdl-38019121

ABSTRACT

The vascular endothelium acts as a dynamic interface between blood and tissue. TNF-α, a major regulator of inflammation, induces endothelial cell (EC) transcriptional changes, the overall response dynamics of which have not been fully elucidated. In the present study, we conducted an extended time-course analysis of the human EC response to TNF, from 30 min to 72 h. We identified regulated genes and used weighted gene network correlation analysis to decipher coexpression profiles, uncovering two distinct temporal phases: an acute response (between 1 and 4 h) and a later phase (between 12 and 24 h). Sex-based subset analysis revealed that the response was comparable between female and male cells. Several previously uncharacterized genes were strongly regulated during the acute phase, whereas the majority in the later phase were IFN-stimulated genes. A lack of IFN transcription indicated that this IFN-stimulated gene expression was independent of de novo IFN production. We also observed two groups of genes whose transcription was inhibited by TNF: those that resolved toward baseline levels and those that did not. Our study provides insights into the global dynamics of the EC transcriptional response to TNF, highlighting distinct gene expression patterns during the acute and later phases. Data for all coding and noncoding genes is provided on the Web site (http://www.endothelial-response.org/). These findings may be useful in understanding the role of ECs in inflammation and in developing TNF signaling-targeted therapies.


Subject(s)
Endothelium, Vascular , Gene Expression Profiling , Male , Humans , Female , Endothelium, Vascular/metabolism , Endothelial Cells/metabolism , Signal Transduction , Cells, Cultured , Inflammation/genetics , Inflammation/metabolism , Tumor Necrosis Factor-alpha/metabolism
4.
Nat Commun ; 14(1): 3280, 2023 06 07.
Article in English | MEDLINE | ID: mdl-37286573

ABSTRACT

Venous thromboembolism (VTE) is a common, multi-causal disease with potentially serious short- and long-term complications. In clinical practice, there is a need for improved plasma biomarker-based tools for VTE diagnosis and risk prediction. Here we show, using proteomics profiling to screen plasma from patients with suspected acute VTE, and several case-control studies for VTE, how Complement Factor H Related 5 protein (CFHR5), a regulator of the alternative pathway of complement activation, is a VTE-associated plasma biomarker. In plasma, higher CFHR5 levels are associated with increased thrombin generation potential and recombinant CFHR5 enhanced platelet activation in vitro. GWAS analysis of ~52,000 participants identifies six loci associated with CFHR5 plasma levels, but Mendelian randomization do not demonstrate causality between CFHR5 and VTE. Our results indicate an important role for the regulation of the alternative pathway of complement activation in VTE and that CFHR5 represents a potential diagnostic and/or risk predictive plasma biomarker.


Subject(s)
Venous Thromboembolism , Humans , Biomarkers , Complement Activation , Complement Factor H/genetics , Complement System Proteins/metabolism , Factor V , Venous Thromboembolism/genetics
5.
Front Immunol ; 14: 1181761, 2023.
Article in English | MEDLINE | ID: mdl-37287977

ABSTRACT

Background: Neutrophil Extracellular Traps (NETs) are key mediators of immunothrombotic mechanisms and defective clearance of NETs from the circulation underlies an array of thrombotic, inflammatory, infectious, and autoimmune diseases. Efficient NET degradation depends on the combined activity of two distinct DNases, DNase1 and DNase1-like 3 (DNase1L3) that preferentially digest double-stranded DNA (dsDNA) and chromatin, respectively. Methods: Here, we engineered a dual-active DNase with combined DNase1 and DNase1L3 activities and characterized the enzyme for its NET degrading potential in vitro. Furthermore, we produced a mouse model with transgenic expression of the dual-active DNase and analyzed body fluids of these animals for DNase1 and DNase 1L3 activities. We systematically substituted 20 amino acid stretches in DNase1 that were not conserved among DNase1 and DNase1L3 with homologous DNase1L3 sequences. Results: We found that the ability of DNase1L3 to degrade chromatin is embedded into three discrete areas of the enzyme's core body, not the C-terminal domain as suggested by the state-of-the-art. Further, combined transfer of the aforementioned areas of DNase1L3 to DNase1 generated a dual-active DNase1 enzyme with additional chromatin degrading activity. The dual-active DNase1 mutant was superior to native DNase1 and DNase1L3 in degrading dsDNA and chromatin, respectively. Transgenic expression of the dual-active DNase1 mutant in hepatocytes of mice lacking endogenous DNases revealed that the engineered enzyme was stable in the circulation, released into serum and filtered to the bile but not into the urine. Conclusion: Therefore, the dual-active DNase1 mutant is a promising tool for neutralization of DNA and NETs with potential therapeutic applications for interference with thromboinflammatory disease states.


Subject(s)
Endodeoxyribonucleases , Extracellular Traps , Mice , Animals , Endodeoxyribonucleases/genetics , Extracellular Traps/metabolism , Deoxyribonuclease I/genetics , Deoxyribonuclease I/metabolism , Chromatin , DNA/metabolism , Deoxyribonucleases/genetics
6.
Biomolecules ; 13(6)2023 05 24.
Article in English | MEDLINE | ID: mdl-37371462

ABSTRACT

BACKGROUND: Intraplaque hemorrhage (IPH) is a hallmark of atherosclerotic plaque instability. Biliverdin reductase B (BLVRB) is enriched in plasma and plaques from patients with symptomatic carotid atherosclerosis and functionally associated with IPH. OBJECTIVE: We explored the biomarker potential of plasma BLVRB through (1) its correlation with IPH in carotid plaques assessed by magnetic resonance imaging (MRI), and with recurrent ischemic stroke, and (2) its use for monitoring pharmacotherapy targeting IPH in a preclinical setting. METHODS: Plasma BLVRB levels were measured in patients with symptomatic carotid atherosclerosis from the PARISK study (n = 177, 5 year follow-up) with and without IPH as indicated by MRI. Plasma BLVRB levels were also measured in a mouse vein graft model of IPH at baseline and following antiangiogenic therapy targeting vascular endothelial growth factor receptor 2 (VEGFR-2). RESULTS: Plasma BLVRB levels were significantly higher in patients with IPH (737.32 ± 693.21 vs. 520.94 ± 499.43 mean fluorescent intensity (MFI), p = 0.033), but had no association with baseline clinical and biological parameters. Plasma BLVRB levels were also significantly higher in patients who developed recurrent ischemic stroke (1099.34 ± 928.49 vs. 582.07 ± 545.34 MFI, HR = 1.600, CI [1.092-2.344]; p = 0.016). Plasma BLVRB levels were significantly reduced following prevention of IPH by anti-VEGFR-2 therapy in mouse vein grafts (1189 ± 258.73 vs. 1752 ± 366.84 MFI; p = 0.004). CONCLUSIONS: Plasma BLVRB was associated with IPH and increased risk of recurrent ischemic stroke in patients with symptomatic low- to moderate-grade carotid stenosis, indicating the capacity to monitor the efficacy of IPH-preventive pharmacotherapy in an animal model. Together, these results suggest the utility of plasma BLVRB as a biomarker for atherosclerotic plaque instability.


Subject(s)
Carotid Artery Diseases , Ischemic Stroke , Plaque, Atherosclerotic , Animals , Humans , Mice , Biomarkers/blood , Carotid Artery Diseases/blood , Carotid Artery Diseases/complications , Hemorrhage/blood , Hemorrhage/diagnostic imaging , Hemorrhage/etiology , Ischemic Stroke/blood , Ischemic Stroke/etiology , Plaque, Atherosclerotic/blood , Plaque, Atherosclerotic/diagnostic imaging , Plaque, Atherosclerotic/pathology , Vascular Endothelial Growth Factor A/antagonists & inhibitors
7.
Front Pharmacol ; 13: 988561, 2022.
Article in English | MEDLINE | ID: mdl-36188622

ABSTRACT

Proprotein convertase subtilisin/kexins (PCSKs) constitute a family of nine related proteases: PCSK1-7, MBTPS1, and PCSK9. Apart from PCSK9, little is known about PCSKs in cardiovascular disease. Here, we aimed to investigate the expression landscape and druggability potential of the entire PCSK family for CVD. We applied an integrative approach, combining genetic, transcriptomic and proteomic data from three vascular biobanks comprising carotid atherosclerosis, thoracic and abdominal aneurysms, with patient clinical parameters and immunohistochemistry of vascular biopsies. Apart from PCSK4, all PCSK family members lie in genetic regions containing variants associated with human cardiovascular traits. Transcriptomic analyses revealed that FURIN, PCSK5, MBTPS1 were downregulated, while PCSK6/7 were upregulated in plaques vs. control arteries. In abdominal aneurysms, FURIN, PCSK5, PCSK7, MBTPS1 were downregulated, while PCSK6 was enriched in diseased media. In thoracic aneurysms, only FURIN was significantly upregulated. Network analyses of the upstream and downstream pathways related to PCSKs were performed on the omics data from vascular biopsies, revealing mechanistic relationships between this protein family and disease. Cell type correlation analyses and immunohistochemistry showed that PCSK transcripts and protein levels parallel each other, except for PCSK9 where transcript was not detected, while protein was abundant in vascular biopsies. Correlations to clinical parameters revealed a positive association between FURIN plaque levels and serum LDL, while PCSK6 was negatively associated with Hb. PCSK5/6/7 were all positively associated with adverse cardiovascular events. Our results show that PCSK6 is abundant in plaques and abdominal aneurysms, while FURIN upregulation is characteristic for thoracic aneurysms. PCSK9 protein, but not the transcript, was present in vascular lesions, suggesting its accumulation from circulation. Integrating our results lead to the development of a novel 'molecular' 5D framework. Here, we conducted the first integrative study of the proprotein convertase family in this context. Our results using this translational pipeline, revealed primarily PCSK6, followed by PCSK5, PCSK7 and FURIN, as proprotein convertases with the highest novel therapeutic potential.

8.
PLoS Genet ; 18(9): e1009923, 2022 09.
Article in English | MEDLINE | ID: mdl-36112662

ABSTRACT

Rare variant association tests (RVAT) have been developed to study the contribution of rare variants widely accessible through high-throughput sequencing technologies. RVAT require to aggregate rare variants in testing units and to filter variants to retain only the most likely causal ones. In the exome, genes are natural testing units and variants are usually filtered based on their functional consequences. However, when dealing with whole-genome sequence (WGS) data, both steps are challenging. No natural biological unit is available for aggregating rare variants. Sliding windows procedures have been proposed to circumvent this difficulty, however they are blind to biological information and result in a large number of tests. We propose a new strategy to perform RVAT on WGS data: "RAVA-FIRST" (RAre Variant Association using Functionally-InfoRmed STeps) comprising three steps. (1) New testing units are defined genome-wide based on functionally-adjusted Combined Annotation Dependent Depletion (CADD) scores of variants observed in the gnomAD populations, which are referred to as "CADD regions". (2) A region-dependent filtering of rare variants is applied in each CADD region. (3) A functionally-informed burden test is performed with sub-scores computed for each genomic category within each CADD region. Both on simulations and real data, RAVA-FIRST was found to outperform other WGS-based RVAT. Applied to a WGS dataset of venous thromboembolism patients, we identified an intergenic region on chromosome 18 enriched for rare variants in early-onset patients. This region that was missed by standard sliding windows procedures is included in a TAD region that contains a strong candidate gene. RAVA-FIRST enables new investigations of rare non-coding variants in complex diseases, facilitated by its implementation in the R package Ravages.


Subject(s)
Genetic Variation , Genomics , DNA, Intergenic , Exome , Genetic Variation/genetics , Genomics/methods , High-Throughput Nucleotide Sequencing/methods , Humans
9.
Cell Rep ; 40(2): 111046, 2022 07 12.
Article in English | MEDLINE | ID: mdl-35830816

ABSTRACT

The importance of defining cell-type-specific genes is well acknowledged. Technological advances facilitate high-resolution sequencing of single cells, but practical challenges remain. Adipose tissue is composed primarily of adipocytes, large buoyant cells requiring extensive, artefact-generating processing for separation and analysis. Thus, adipocyte data are frequently absent from single-cell RNA sequencing (scRNA-seq) datasets, despite being the primary functional cell type. Here, we decipher cell-type-enriched transcriptomes from unfractionated human adipose tissue RNA-seq data. We profile all major constituent cell types, using 527 visceral adipose tissue (VAT) or 646 subcutaneous adipose tissue (SAT) samples, identifying over 2,300 cell-type-enriched transcripts. Sex-subset analysis uncovers a panel of male-only cell-type-enriched genes. By resolving expression profiles of genes differentially expressed between SAT and VAT, we identify mesothelial cells as the primary driver of this variation. This study provides an accessible method to profile cell-type-enriched transcriptomes using bulk RNA-seq, generating a roadmap for adipose tissue biology.


Subject(s)
Subcutaneous Fat , Transcriptome , Adipose Tissue/metabolism , Gene Expression Profiling , Humans , Intra-Abdominal Fat/metabolism , Male , Subcutaneous Fat/metabolism , Transcriptome/genetics
10.
PLoS One ; 17(7): e0270865, 2022.
Article in English | MEDLINE | ID: mdl-35901107

ABSTRACT

BACKGROUND: Venous thromboembolism (VTE) diagnosis would greatly benefit from the identification of novel biomarkers to complement D-dimer, a marker limited by low specificity. Neutrophil extracellular traps (NETs) have been shown to promote thrombosis and could hypothetically be used for diagnosis of acute VTE. OBJECTIVES: To assess the levels of specific markers of neutrophil activation and NETs and compare their diagnostic accuracy to D-dimer. METHODS: We measured plasma levels of neutrophil activation marker neutrophil elastase (NE), the NET marker nucleosomal citrullinated histone H3 (H3Cit-DNA) and cell-free DNA in patients (n = 294) with suspected VTE (pulmonary embolism and deep vein thrombosis) as well as healthy controls (n = 30). A total of 112 VTE positive and 182 VTE negative patients from two prospective cohort studies were included. RESULTS: Higher levels of H3Cit-DNA and NE, but not cell-free DNA, were associated with VTE. Area under receiver operating curves (AUC) were 0.90 and 0.93 for D-dimer, 0.65 and 0.68 for NE and 0.60 and 0.67 for H3Cit-DNA in the respective cohorts. Adding NE and H3Cit-DNA to a D-dimer based risk model did not improve AUC. CONCLUSIONS: Our study demonstrates the presence of neutrophil activation and NET formation in VTE using specific markers. However, the addition of NE or H3Cit-DNA to D-dimer did not improve the discrimination compared to D-dimer alone. This study provides information on the feasibility of using markers of NETs as diagnostic tools in acute VTE. Based on our findings, we believe the potential of these markers are limited in this setting.


Subject(s)
Extracellular Traps , Venous Thromboembolism , Venous Thrombosis , Biomarkers , DNA , Feasibility Studies , Fibrin Fibrinogen Degradation Products , Histones , Humans , Neutrophil Activation , Prospective Studies , Venous Thromboembolism/diagnosis , Venous Thrombosis/diagnosis
11.
Res Pract Thromb Haemost ; 6(3): e12706, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35494505

ABSTRACT

A State of the Art lecture titled "Proteomics in Thrombosis Research" was presented at the ISTH Congress in 2021. In clinical practice, there is a need for improved plasma biomarker-based tools for diagnosis and risk prediction of venous thromboembolism (VTE). Analysis of blood, to identify plasma proteins with potential utility for such tools, could enable an individualized approach to treatment and prevention. Technological advances to study the plasma proteome on a large scale allows broad screening for the identification of novel plasma biomarkers, both by targeted and nontargeted proteomics methods. However, assay limitations need to be considered when interpreting results, with orthogonal validation required before conclusions are drawn. Here, we review and provide perspectives on the application of affinity- and mass spectrometry-based methods for the identification and analysis of plasma protein biomarkers, with potential application in the field of VTE. We also provide a future perspective on discovery strategies and emerging technologies for targeted proteomics in thrombosis research. Finally, we summarize relevant new data on this topic, presented during the 2021 ISTH Congress.

12.
Arterioscler Thromb Vasc Biol ; 41(12): 2990-3004, 2021 12.
Article in English | MEDLINE | ID: mdl-34706560

ABSTRACT

OBJECTIVE: Endothelial cell (EC) dysfunction is a well-established response to cardiovascular disease risk factors, such as smoking and obesity. Risk factor exposure can modify EC signaling and behavior, leading to arterial and venous disease development. Here, we aimed to identify biomarker panels for the assessment of EC dysfunction, which could be useful for risk stratification or to monitor treatment response. Approach and Results: We used affinity proteomics to identify EC proteins circulating in plasma that were associated with cardiovascular disease risk factor exposure. Two hundred sixteen proteins, which we previously predicted to be EC-enriched across vascular beds, were measured in plasma samples (N=1005) from the population-based SCAPIS (Swedish Cardiopulmonary Bioimage Study) pilot. Thirty-eight of these proteins were associated with body mass index, total cholesterol, low-density lipoprotein, smoking, hypertension, or diabetes. Sex-specific analysis revealed that associations predominantly observed in female- or male-only samples were most frequently with the risk factors body mass index, or total cholesterol and smoking, respectively. We show a relationship between individual cardiovascular disease risk, calculated with the Framingham risk score, and the corresponding biomarker profiles. CONCLUSIONS: EC proteins in plasma could reflect vascular health status.


Subject(s)
Cardiovascular Diseases/blood , Endothelium, Vascular/metabolism , Proteomics/methods , Biomarkers/blood , Cardiovascular Diseases/pathology , Endothelium, Vascular/pathology , Female , Heart Disease Risk Factors , Humans , Male , Middle Aged
13.
Sci Rep ; 11(1): 14015, 2021 07 07.
Article in English | MEDLINE | ID: mdl-34234248

ABSTRACT

Venous thromboembolism is the third common cardiovascular disease and is composed of two entities, deep vein thrombosis (DVT) and its potential fatal form, pulmonary embolism (PE). While PE is observed in ~ 40% of patients with documented DVT, there is limited biomarkers that can help identifying patients at high PE risk. To fill this need, we implemented a two hidden-layers artificial neural networks (ANN) on 376 antibodies and 19 biological traits measured in the plasma of 1388 DVT patients, with or without PE, of the MARTHA study. We used the LIME algorithm to obtain a linear approximate of the resulting ANN prediction model. As MARTHA patients were typed for genotyping DNA arrays, a genome wide association study (GWAS) was conducted on the LIME estimate. Detected single nucleotide polymorphisms (SNPs) were tested for association with PE risk in MARTHA. Main findings were replicated in the EOVT study composed of 143 PE patients and 196 DVT only patients. The derived ANN model for PE achieved an accuracy of 0.89 and 0.79 in our training and testing sets, respectively. A GWAS on the LIME approximate identified a strong statistical association peak (rs1424597: p = 5.3 × 10-7) at the PLXNA4 locus. Homozygote carriers for the rs1424597-A allele were then more frequently observed in PE than in DVT patients from the MARTHA (2% vs. 0.4%, p = 0.005) and the EOVT (3% vs. 0%, p = 0.013) studies. In a sample of 112 COVID-19 patients known to have endotheliopathy leading to acute lung injury and an increased risk of PE, decreased PLXNA4 levels were associated (p = 0.025) with worsened respiratory function. Using an original integrated proteomics and genetics strategy, we identified PLXNA4 as a new susceptibility gene for PE whose exact role now needs to be further elucidated.


Subject(s)
Genetic Predisposition to Disease/genetics , Neural Networks, Computer , Proteomics , Pulmonary Embolism/blood , Pulmonary Embolism/genetics , Receptors, Cell Surface/blood , Receptors, Cell Surface/genetics , Adult , COVID-19/complications , Female , Genome-Wide Association Study , Humans , Male , Phenotype , Polymorphism, Single Nucleotide , Pulmonary Embolism/complications , Pulmonary Embolism/metabolism
14.
Sci Adv ; 7(31)2021 07.
Article in English | MEDLINE | ID: mdl-34321199

ABSTRACT

Advances in molecular profiling have opened up the possibility to map the expression of genes in cells, tissues, and organs in the human body. Here, we combined single-cell transcriptomics analysis with spatial antibody-based protein profiling to create a high-resolution single-cell type map of human tissues. An open access atlas has been launched to allow researchers to explore the expression of human protein-coding genes in 192 individual cell type clusters. An expression specificity classification was performed to determine the number of genes elevated in each cell type, allowing comparisons with bulk transcriptomics data. The analysis highlights distinct expression clusters corresponding to cell types sharing similar functions, both within the same organs and between organs.


Subject(s)
Proteome , Transcriptome , Antibodies/metabolism , Gene Expression Profiling , Humans , Proteome/metabolism , Proteomics
15.
Methods Mol Biol ; 2344: 163-179, 2021.
Article in English | MEDLINE | ID: mdl-34115359

ABSTRACT

Systematic exploration of the dynamic human plasma proteome enables the discovery of novel protein biomarkers. Using state-of-the-art technologies holds the promise to facilitate a better diagnosis and risk prediction of diseases. Cardiovascular disease (CVD) pathophysiology is characterized for unbalancing of processes such as vascular inflammation, endothelial dysfunction, or lipid profiles among others. Such processes have a direct impact on the dynamic and complex composition of blood and hence the plasma proteome. Therefore, the study of the plasma proteome comprises an excellent exploratory source of biomarker research particularly for CVD. We describe the protocol for performing the discovery of protein biomarker candidates using the suspension bead array technology. The process does not require depletion steps to remove abundant proteins and consumes only a few microliters of sample from the body fluid of interest. The approach is scalable to measure many analytes as well as large numbers of samples. Moreover, we describe a bead-assisted antibody-labeling process that helps to develop quantitative assays for validation purposes and facilitate the translation of the identified candidates into clinical studies.


Subject(s)
Cardiovascular Diseases/blood , Proteome/analysis , Proteomics , Biomarkers/blood , Cardiovascular Diseases/physiopathology , Humans
16.
Blood ; 137(10): 1392-1405, 2021 03 11.
Article in English | MEDLINE | ID: mdl-32932519

ABSTRACT

Polyphosphate is a procoagulant inorganic polymer of linear-linked orthophosphate residues. Multiple investigations have established the importance of platelet polyphosphate in blood coagulation; however, the mechanistic details of polyphosphate homeostasis in mammalian species remain largely undefined. In this study, xenotropic and polytropic retrovirus receptor 1 (XPR1) regulated polyphosphate in platelets and was implicated in thrombosis in vivo. We used bioinformatic analyses of omics data to identify XPR1 as a major phosphate transporter in platelets. XPR1 messenger RNA and protein expression inversely correlated with intracellular polyphosphate content and release. Pharmacological interference with XPR1 activity increased polyphosphate stores, led to enhanced platelet-driven coagulation, and amplified thrombus formation under flow via the polyphosphate/factor XII pathway. Conditional gene deletion of Xpr1 in platelets resulted in polyphosphate accumulation, accelerated arterial thrombosis, and augmented activated platelet-driven pulmonary embolism without increasing bleeding in mice. These data identify platelet XPR1 as an integral regulator of platelet polyphosphate metabolism and reveal a fundamental role for phosphate homeostasis in thrombosis.


Subject(s)
Blood Platelets/metabolism , Polyphosphates/metabolism , Receptors, G-Protein-Coupled/metabolism , Receptors, Virus/metabolism , Thrombosis/metabolism , Animals , Biological Transport , Blood Coagulation , Factor XII/metabolism , Female , Male , Mice , Thrombosis/blood , Xenotropic and Polytropic Retrovirus Receptor
17.
Nat Commun ; 11(1): 4487, 2020 09 08.
Article in English | MEDLINE | ID: mdl-32900998

ABSTRACT

An important aspect of precision medicine is to probe the stability in molecular profiles among healthy individuals over time. Here, we sample a longitudinal wellness cohort with 100 healthy individuals and analyze blood molecular profiles including proteomics, transcriptomics, lipidomics, metabolomics, autoantibodies and immune cell profiling, complemented with gut microbiota composition and routine clinical chemistry. Overall, our results show high variation between individuals across different molecular readouts, while the intra-individual baseline variation is low. The analyses show that each individual has a unique and stable plasma protein profile throughout the study period and that many individuals also show distinct profiles with regards to the other omics datasets, with strong underlying connections between the blood proteome and the clinical chemistry parameters. In conclusion, the results support an individual-based definition of health and show that comprehensive omics profiling in a longitudinal manner is a path forward for precision medicine.


Subject(s)
Healthy Aging/metabolism , Metabolome , Proteome/metabolism , Aged , Cohort Studies , Female , Healthy Aging/genetics , Healthy Volunteers , Humans , Lipidomics , Longitudinal Studies , Male , Metabolomics , Middle Aged , Precision Medicine , Prospective Studies , Proteomics , Sweden , Transcriptome
18.
Life Sci Alliance ; 3(10)2020 10.
Article in English | MEDLINE | ID: mdl-32737166

ABSTRACT

Despite recognizing aging as a common risk factor of many human diseases, little is known about its molecular traits. To identify age-associated proteins circulating in human blood, we screened 156 individuals aged 50-92 using exploratory and multiplexed affinity proteomics assays. Profiling eight additional study sets (N = 3,987), performing antibody validation, and conducting a meta-analysis revealed a consistent age association (P = 6.61 × 10-6) for circulating histidine-rich glycoprotein (HRG). Sequence variants of HRG influenced how the protein was recognized in the immunoassays. Indeed, only the HRG profiles affected by rs9898 were associated with age and predicted the risk of mortality (HR = 1.25 per SD; 95% CI = 1.12-1.39; P = 6.45 × 10-5) during a follow-up period of 8.5 yr after blood sampling (IQR = 7.7-9.3 yr). Our affinity proteomics analysis found associations between the particular molecular traits of circulating HRG with age and all-cause mortality. The distinct profiles of this multipurpose protein could serve as an accessible and informative indicator of the physiological processes related to biological aging.


Subject(s)
Aging/physiology , Proteins/analysis , Aged , Aged, 80 and over , Aging/genetics , Female , Follow-Up Studies , Humans , Immunoglobulin G/immunology , Male , Middle Aged , Protein Binding , Proteins/genetics , Proteins/metabolism , Proteomics/methods
19.
EBioMedicine ; 57: 102854, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32629387

ABSTRACT

BACKGROUND: Precision medicine approaches aim to tackle diseases on an individual level through molecular profiling. Despite the growing knowledge about diseases and the reported diversity of molecular phenotypes, the descriptions of human health on an individual level have been far less elaborate. METHODS: To provide insights into the longitudinal protein signatures of well-being, we profiled blood plasma collected over one year from 101 clinically healthy individuals using multiplexed antibody assays. After applying an antibody validation scheme, we utilized > 700 protein profiles for in-depth analyses of the individuals' short-term health trajectories. FINDINGS: We found signatures of circulating proteomes to be highly individual-specific. Considering technical and longitudinal variability, we observed that 49% of the protein profiles were stable over one year. We also identified eight networks of proteins in which 11-242 proteins covaried over time. For each participant, there were unique protein profiles of which some could be explained by associations to genetic variants. INTERPRETATION: This observational and non-interventional study identifyed noticeable diversity among clinically healthy subjects, and facets of individual-specific signatures emerged by monitoring the variability of the circulating proteomes over time. To enable more personal hence precise assessments of health states, longitudinal profiling of circulating proteomes can provide a valuable component for precision medicine approaches. FUNDING: This work was supported by the Erling Persson Foundation, the Swedish Heart and Lung Foundation, the Knut and Alice Wallenberg Foundation, Science for Life Laboratory, and the Swedish Research Council.


Subject(s)
Blood Proteins/genetics , Precision Medicine , Proteome/genetics , Proteomics , Adult , Antibodies , Female , Gene Expression Profiling , Healthy Volunteers , Humans , Male , Middle Aged , Phenotype , Sweden/epidemiology
20.
Circ Res ; 126(5): 571-585, 2020 02 28.
Article in English | MEDLINE | ID: mdl-31893970

ABSTRACT

RATIONALE: PCSKs (Proprotein convertase subtilisins/kexins) are a protease family with unknown functions in vasculature. Previously, we demonstrated PCSK6 upregulation in human atherosclerotic plaques associated with smooth muscle cells (SMCs), inflammation, extracellular matrix remodeling, and mitogens. OBJECTIVE: Here, we applied a systems biology approach to gain deeper insights into the PCSK6 role in normal and diseased vessel wall. METHODS AND RESULTS: Genetic analyses revealed association of intronic PCSK6 variant rs1531817 with maximum internal carotid intima-media thickness progression in high-cardiovascular risk subjects. This variant was linked with PCSK6 mRNA expression in healthy aortas and plaques but also with overall plaque SMA+ cell content and pericyte fraction. Increased PCSK6 expression was found in several independent human cohorts comparing atherosclerotic lesions versus healthy arteries, using transcriptomic and proteomic datasets. By immunohistochemistry, PCSK6 was localized to fibrous cap SMA+ cells and neovessels in plaques. In human, rat, and mouse intimal hyperplasia, PCSK6 was expressed by proliferating SMA+ cells and upregulated after 5 days in rat carotid balloon injury model, with positive correlation to PDGFB (platelet-derived growth factor subunit B) and MMP (matrix metalloprotease) 2/MMP14. Here, PCSK6 was shown to colocalize and cointeract with MMP2/MMP14 by in situ proximity ligation assay. Microarrays of carotid arteries from Pcsk6-/- versus control mice revealed suppression of contractile SMC markers, extracellular matrix remodeling enzymes, and cytokines/receptors. Pcsk6-/- mice showed reduced intimal hyperplasia response upon carotid ligation in vivo, accompanied by decreased MMP14 activation and impaired SMC outgrowth from aortic rings ex vivo. PCSK6 silencing in human SMCs in vitro leads to downregulation of contractile markers and increase in MMP2 expression. Conversely, PCSK6 overexpression increased PDGFBB (platelet-derived growth factor BB)-induced cell proliferation and particularly migration. CONCLUSIONS: PCSK6 is a novel protease that induces SMC migration in response to PDGFB, mechanistically via modulation of contractile markers and MMP14 activation. This study establishes PCSK6 as a key regulator of SMC function in vascular remodeling. Visual Overview: An online visual overview is available for this article.


Subject(s)
Myocytes, Smooth Muscle/metabolism , Proprotein Convertases/genetics , Serine Endopeptidases/genetics , Vascular Remodeling , Animals , Carotid Arteries/metabolism , Carotid Arteries/pathology , Cell Movement , Cell Proliferation , Cells, Cultured , Male , Matrix Metalloproteinases/genetics , Matrix Metalloproteinases/metabolism , Mice , Mice, Inbred C57BL , Myocytes, Smooth Muscle/physiology , Polymorphism, Single Nucleotide , Proprotein Convertases/metabolism , Proto-Oncogene Proteins c-sis/metabolism , Rats , Rats, Sprague-Dawley , Serine Endopeptidases/metabolism , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL
...