Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
RNA ; 19(7): 902-15, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23685439

ABSTRACT

Step 2 catalysis of pre-mRNA splicing entails the excision of the intron and ligation of the 5' and 3' exons. The tasks of the splicing factors Prp16, Slu7, Prp18, and Prp22 in the formation of the step 2 active site of the spliceosome and in exon ligation, and the timing of their recruitment, remain poorly understood. Using a purified yeast in vitro splicing system, we show that only the DEAH-box ATPase Prp16 is required for formation of a functional step 2 active site and for exon ligation. Efficient docking of the 3' splice site (3'SS) to the active site requires only Slu7/Prp18 but not Prp22. Spliceosome remodeling by Prp16 appears to be subtle as only the step 1 factor Cwc25 is dissociated prior to step 2 catalysis, with its release dependent on docking of the 3'SS to the active site and Prp16 action. We show by fluorescence cross-correlation spectroscopy that Slu7/Prp18 and Prp16 bind early to distinct, low-affinity binding sites on the step-1-activated B* spliceosome, which are subsequently converted into high-affinity sites. Our results shed new light on the factor requirements for step 2 catalysis and the dynamics of step 1 and 2 factors during the catalytic steps of splicing.


Subject(s)
RNA Splicing , RNA, Fungal/metabolism , Spliceosomes/metabolism , Yeasts/genetics , Catalysis , Catalytic Domain , DEAD-box RNA Helicases/genetics , DEAD-box RNA Helicases/metabolism , Exons , Fungal Proteins/genetics , Fungal Proteins/metabolism , Multiprotein Complexes/genetics , Multiprotein Complexes/metabolism , Protein Binding , RNA Splice Sites , RNA, Fungal/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Spectrometry, Fluorescence , Spliceosomes/genetics , Yeasts/metabolism
2.
RNA ; 18(6): 1244-56, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22535589

ABSTRACT

The compositional and conformational changes during catalytic activation of the spliceosome promoted by the DEAH box ATPase Prp2 are only poorly understood. Here, we show by dual-color fluorescence cross-correlation spectroscopy (dcFCCS) that the binding affinity of several proteins is significantly changed during the Prp2-mediated transition of precatalytic B(act) spliceosomes to catalytically activated B* spliceosomes from Saccharomyces cerevisiae. During this step, several proteins, including the zinc-finger protein Cwc24, are quantitatively displaced from the B* complex. Consistent with this, we show that Cwc24 is required for step 1 but not for catalysis per se. The U2-associated SF3a and SF3b proteins Prp11 and Cus1 remain bound to the B* spliceosome under near-physiological conditions, but their binding is reduced at high salt. Conversely, high-affinity binding sites are created for Yju2 and Cwc25 during catalytic activation, consistent with their requirement for step 1 catalysis. Our results suggest high cooperativity of multiple Prp2-mediated structural rearrangements at the spliceosome's catalytic core. Moreover, dcFCCS represents a powerful tool ideally suited to study quantitatively spliceosomal protein dynamics in equilibrium.


Subject(s)
DEAD-box RNA Helicases/chemistry , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae/enzymology , Spliceosomes/chemistry , Catalytic Domain , Protein Binding , Spectrometry, Fluorescence/methods
4.
Mol Cell Biol ; 31(13): 2667-82, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21536652

ABSTRACT

More than 200 proteins associate with human spliceosomes, but little is known about their relative abundances in a given spliceosomal complex. Here we describe a novel two-dimensional (2D) electrophoresis method that allows separation of high-molecular-mass proteins without in-gel precipitation and thus without loss of protein. Using this system coupled with mass spectrometry, we identified 171 proteins altogether on 2D maps of stage-specific spliceosomal complexes. By staining with a fluorescent dye with a wide linear intensity range, we could quantitate and categorize proteins as present in high, moderate, or low abundance. Affinity-purified human B, B(act), and C complexes contained 69, 63, and 72 highly/moderately abundant proteins, respectively. The recruitment and release of spliceosomal proteins were followed based on their abundances in A, B, B(act), and C spliceosomal complexes. Staining with a phospho-specific dye revealed that approximately one-third of the proteins detected in human spliceosomal complexes by 2D gel analyses are phosphorylated. The 2D gel electrophoresis system described here allows for the first time an objective view of the relative abundances of proteins present in a particular spliceosomal complex and also sheds additional light on the spliceosome's compositional dynamics and the phosphorylation status of spliceosomal proteins at specific stages of splicing.


Subject(s)
Electrophoresis, Gel, Two-Dimensional/methods , Proteomics/methods , Spliceosomes/genetics , HeLa Cells , Humans , Proteins/analysis , Spliceosomes/chemistry
5.
Nat Struct Mol Biol ; 16(12): 1237-43, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19935684

ABSTRACT

The spliceosome is a ribonucleoprotein machine that removes introns from pre-mRNA in a two-step reaction. To investigate the catalytic steps of splicing, we established an in vitro splicing complementation system. Spliceosomes stalled before step 1 of this process were purified to near-homogeneity from a temperature-sensitive mutant of the RNA helicase Prp2, compositionally defined, and shown to catalyze efficient step 1 when supplemented with recombinant Prp2, Spp2 and Cwc25, thereby demonstrating that Cwc25 has a previously unknown role in promoting step 1. Step 2 catalysis additionally required Prp16, Slu7, Prp18 and Prp22. Our data further suggest that Prp2 facilitates catalytic activation by remodeling the spliceosome, including destabilizing the SF3a and SF3b proteins, likely exposing the branch site before step 1. Remodeling by Prp2 was confirmed by negative stain EM and image processing. This system allows future mechanistic analyses of spliceosome activation and catalysis.


Subject(s)
RNA, Fungal/isolation & purification , RNA, Fungal/metabolism , Saccharomyces cerevisiae Proteins/isolation & purification , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Spliceosomes/metabolism , Adenosine Triphosphatases/isolation & purification , Adenosine Triphosphatases/metabolism , DEAD-box RNA Helicases/isolation & purification , DEAD-box RNA Helicases/metabolism , Image Processing, Computer-Assisted , Microscopy, Electron/methods , Models, Biological , RNA Helicases/isolation & purification , RNA Helicases/metabolism , RNA Splicing Factors , Ribonucleoprotein, U2 Small Nuclear/isolation & purification , Ribonucleoprotein, U2 Small Nuclear/metabolism , Ribonucleoprotein, U5 Small Nuclear/isolation & purification , Ribonucleoprotein, U5 Small Nuclear/metabolism , Ribonucleoproteins, Small Nuclear/isolation & purification , Ribonucleoproteins, Small Nuclear/metabolism , Spliceosomes/ultrastructure
6.
BMC Res Notes ; 1: 100, 2008 Oct 28.
Article in English | MEDLINE | ID: mdl-18957101

ABSTRACT

BACKGROUND: Little is known about the physiological role of the EBER1 and 2 nuclear RNAs during Epstein Barr viral infection. The EBERs are transcribed by cellular RNA Polymerase III and their strong expression results in 106 to 107 copies per EBV infected cell, making them reliable diagnostic markers for the presence of EBV. Although the functions of most of the proteins targeted by EBER RNAs have been studied, the role of EBERs themselves still remains elusive. FINDINGS: The cellular transcription response to EBER2 expression using the wild-type and an internal deletion mutant was determined. Significant changes in gene expression patterns were observed. A functional meta-analysis of the regulated genes points to inhibition of stress and immune responses, as well as activation of cellular growth and cytoskeletal reorganization as potential targets for EBER2 RNA. Different functions can be assigned to different parts of the RNA. CONCLUSION: These results provide new avenues to the understanding of EBER2 and EBV biology, and set the grounds for a more in depth functional analysis of EBER2 using transcriptome activity measurements.

SELECTION OF CITATIONS
SEARCH DETAIL
...