Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 145(51): 27950-27957, 2023 Dec 27.
Article in English | MEDLINE | ID: mdl-38103185

ABSTRACT

Recent breakthroughs in the generation of polar-functionalized and more sustainable degradable polyethylenes have been enabled by advanced phosphinephenolato Ni(II) catalysts. A key has been to overcome this type of catalysts' propensity for extensive chain transfer to enable formation of high-molecular-weight polyethylene chains. We elucidate the mechanistic origin of this paradigm shift by a combined experimental and theoretical study. Single-crystal X-ray structural analysis and cyclic voltammetry of a set of six different catalysts with variable electronics and sterics, combined with extensive pressure reactor polymerization studies, suggest that an attractive Ni-aryl interaction of a P-[2-(aryl)phenyl] is responsible for the suppression of chain transfer. This differs from the established picture of steric shielding found for other prominent late transition metal catalysts. Extensive density functional theory studies identify the relevant pathways of chain growth and chain transfer and show how this attractive interaction suppresses chain transfer.

2.
J Am Chem Soc ; 144(33): 15111-15117, 2022 Aug 24.
Article in English | MEDLINE | ID: mdl-35944187

ABSTRACT

Polyethylene materials with in-chain-incorporated keto groups were recently enabled by nonalternating copolymerization of ethylene with carbon monoxide in the presence of Ni(II) phosphinephenolate catalysts. We elucidate the mechanism of this long-sought-for reaction by a combined theoretical DFT study of catalytically active species and the experimental study of polymer microstructures formed in pressure-reactor copolymerizations with different catalysts. The pathway leading to the desired nonalternating incorporation proceeds via the cis/trans isomerization of an alkyl-olefin intermediate as the rate-determining step. The formation of alternating motifs is determined by the barrier for the opening of the six-membered C,O-chelate by ethylene binding as the decisive step. An η2-coordination of a P-bound aromatic moiety axially oriented to the metal center is a crucial feature of these Ni(II) catalysts, which also modulates the competition between the two pathways. The conformational constraints imposed in a 2',6'-dimethoxybiphenyl moiety overall result in a desirable combination of disfavoring ethylene coordination along the alternating incorporation pathway, which is primarily governed by electronics, while not overly penalizing the nonalternating chain growth, which is primarily governed by sterics.

3.
J Am Chem Soc ; 144(29): 13226-13233, 2022 Jul 27.
Article in English | MEDLINE | ID: mdl-35838588

ABSTRACT

Vitrimers can combine the advantageous properties of cross-linked materials with thermoplastic processability. For the prominent case of polyethylene, established post-polymerization introduction of cross-linkable moieties results in extremely heterogeneous compositions of the chains. Here, we report the generation of functionalized polyethylenes directly by catalytic insertion polymerization, with incorporated cross-linkable aryl boronic esters or alternatively acetal-protected groups suited for cross-linking with difunctional boronic esters. In addition to the desired homogeneous in-chain distribution, the reactive cross-linkable groups are enriched at the chain ends. This enables the incorporation of all chains in the network, as also supported by simulations of all chains' compositions. The uniform molecular composition of the chains reflects in resulting vitrimers' material properties, particularly lack of leaching with solvents. At the same time, cross-linking is indeed fully reversible and the vitrimers can be recycled.

4.
Science ; 374(6567): 604-607, 2021 Oct 29.
Article in English | MEDLINE | ID: mdl-34709904

ABSTRACT

The world's most abundantly manufactured plastic, polyethylene, consists of inert hydrocarbon chains. The introduction of reactive polar groups in these chains could help overcome problematic environmental persistence and enhance compatibility with other materials. We show that phosphinophenolate-coordinated nickel complexes can catalyze nonalternating copolymerization of ethylene with carbon monoxide to incorporate a low density of individual in-chain keto groups in polyethylene chains with high molecular weight while retaining desirable material properties. After processing by conventional injection molding techniques, tensile properties remain on par with those of standard high-density polyethylene while also imparting photodegradability.

SELECTION OF CITATIONS
SEARCH DETAIL
...