Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 16(3)2023 Jan 18.
Article in English | MEDLINE | ID: mdl-36769926

ABSTRACT

Tungsten heavy alloys (WHAs) are candidates for use in fusion reactor divertors. Here, we characterize liquid-phase sintered WHAs with 90, 92.5, 95, and 97 (wt.%) tungsten (W), with a balance of a 0.7Ni-0.3Fe ductile phase. These WHAs show remarkable room temperature (RT) fracture toughness at the maximum load, KJm, ranging from ≈ 38 to 107 MPa√m, compared to a monolithic W toughness of ≈ 8 MPa√m. In most cases, the fracture of WHAs occurs through stable crack tearing. However, the 97W WHA has the lowest toughness and fracture elastically in all but the smallest specimens. As lower Ni contents are desirable for fusion application, we explore the potential for improving the ductility and KJm of WHAs using vacuum annealing at 1300 °C for 24 h. The microstructural observations reveal negligible changes in the WHA microstructure and constituent compositions. While annealing reduces the Vickers microhardness (HV), it does not significantly change the RT yield (σy) and ultimate (σu) strengths but results in beneficial increases in total elongation in the 95 and 97W WHAs by a factor of 2. RT tests on the precracked three-point-bend (3PB) bars show that annealing increases the KJm of these WHAs, and in the case of the 97W WHA, the increase is from 42 to 92%, depending on the size of the specimen. Toughening is due to enhanced crack tip process zone microcracking and dilatation.

2.
J Electron Microsc (Tokyo) ; 61(6): 393-400, 2012.
Article in English | MEDLINE | ID: mdl-23042825

ABSTRACT

Formation of nanoscale helium (He) bubbles in reduced activation ferritic/martensitic steels may lead to degradation of mechanical properties of materials. Transmission electron microscopy (TEM) has commonly been used to image the Fresnel contrast of He bubbles, using an underfocus of 0.5-1 µm. This paper presents our study of multislice simulation of the size correlation between imaged Fresnel rings and the actual He bubbles. It was found that for bubbles equal to or >3 nm in diameter, the imaged bubble size, represented by its inner diameter of the first dark Fresnel ring (D(in)) in underfocused imaging conditions, increases with increasing electron-beam incoherency, but decreases with increasing underfocus. The electron-beam accelerating voltage, bubble size, bubble position and TEM sample thickness were found to have no significant influence on the deviation of D(in) from the actual bubble size (D(0)). However, for bubbles equal to or <2 nm, D(in)/D(0) increases dramatically with increasing underfocus when it is above a threshold limit (e.g. Δf = -1 µm for a 2-nm bubble). The results of this study also suggested that He bubbles can be differentiated from argon (Ar) bubbles by contrast differences.

SELECTION OF CITATIONS
SEARCH DETAIL
...