Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Ecotechnol ; 18: 100314, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37854462

ABSTRACT

A reduction in building occupancy can lead to stagnant water in plumbing, and the potential consequences for water quality have gained increasing attention. To investigate this, a study was conducted during the COVID-19 pandemic, focusing on water quality in four institutional buildings. Two of these buildings were old (>58 years) and large (>19,000 m2), while the other two were new (>13 years) and small (<11,000 m2). The study revealed significant decreases in water usage in the small buildings, whereas usage remained unchanged in the large buildings. Initial analysis found that residual chlorine was rarely detectable in cold/drinking water samples. Furthermore, the pH, dissolved oxygen, total organic carbon, and total cell count levels in the first draw of cold water samples were similar across all buildings. However, the ranges of heavy metal concentrations in large buildings were greater than observed in small buildings. Copper (Cu), lead (Pb), and manganese (Mn) sporadically exceeded drinking water limits at cold water fixtures, with maximum concentrations of 2.7 mg Cu L-1, 45.4 µg Pb L-1, 1.9 mg Mn L-1. Flushing the plumbing for 5 min resulted in detectable residual at fixtures in three buildings, but even after 125 min of flushing in largest and oldest building, no residual chlorine was detected at the fixture closest to the building's point of entry. During the pandemic, the building owner conducted fixture flushing, where one to a few fixtures were operated per visit in buildings with hundreds of fixtures and multiple floors. However, further research is needed to understand the fundamental processes that control faucet water quality from the service line to the faucet. In the absence of this knowledge, building owners should create and use as-built drawings to develop flushing plans and conduct periodic water testing.

2.
Environ Sci Technol ; 54(18): 11453-11463, 2020 09 15.
Article in English | MEDLINE | ID: mdl-32786341

ABSTRACT

When rainwater harvesting is utilized as an alternative water resource in buildings, a combination of municipal water and rainwater is typically required to meet water demands. Altering source water chemistry can disrupt pipe scale and biofilm and negatively impact water quality at the distribution level. Still, it is unknown if similar reactions occur within building plumbing following a transition in source water quality. The goal of this study was to investigate changes in water chemistry and microbiology at a green building following a transition between municipal water and rainwater. We monitored water chemistry (metals, alkalinity, and disinfectant byproducts) and microbiology (total cell counts, plate counts, and opportunistic pathogen gene markers) throughout two source water transitions. Several constituents including alkalinity and disinfectant byproducts served as indicators of municipal water remaining in the system since the rainwater source does not contain these constituents. In the treated rainwater, microbial proliferation and Legionella spp. gene copy numbers were often three logs higher than those in municipal water. Because of differences in source water chemistry, rainwater and municipal water uniquely interacted with building plumbing and generated distinctively different drinking water chemical and microbial quality profiles.


Subject(s)
Drinking Water , Legionella , Drinking Water/analysis , Rain , Water , Water Microbiology , Water Quality , Water Supply
SELECTION OF CITATIONS
SEARCH DETAIL
...