Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomech ; 159: 111776, 2023 10.
Article in English | MEDLINE | ID: mdl-37683377

ABSTRACT

Undergraduate research is commonly performed in many STEM disciplines and has a wide array of benefits for students, laboratories, principal investigators, and institutions. While many fields have assessed best practices and the cost-benefit analysis of incorporating undergraduates in research, this has not yet been addressed in biomechanics. This paper represents the perspectives of seven members of the American Society of Biomechanics (ASB) Teaching Biomechanics Interest Group (TBIG). These TBIG members discussed their own experience regarding the opportunities, challenges, and benefits of undergraduate research and this perspective paper presents the commonalities found during these interactions. The TBIG members reported that undergraduate research was assessed similarly to graduate student research, which often led to an underestimation of productivity for both the student and overall lab output. While undergraduate researchers are not often responsible for publications and grant funding, they are instrumental in lab productivity in other ways, such as through human subject approvals, conference abstract presentations, student thesis projects, and more. Students benefit from these experiences, not necessarily by continuing in research, but by learning skills and making connections which further them in any career. While this perspective presents the experience of seven professors in the United States, future studies should further assess the cost-benefit relationship of working with undergraduates in biomechanics research on a global scale. A clearer picture of this analysis could benefit students, faculty, and administrators in making difficult decisions about lab productivity and assessment.


Subject(s)
Learning , Students , Humans , Biomechanical Phenomena , Faculty
2.
Appl Bionics Biomech ; 2019: 2639271, 2019.
Article in English | MEDLINE | ID: mdl-31001359

ABSTRACT

Knowledge of the upper extremity (UE) effort exerted under real-world conditions is important for understanding how persons with motor or sensory disorders perform the postural shifts necessary to complete many activities of daily living while standing. To this end, a feedback controller, named the "Posture Follower Controller", was developed to aid in task-dependent posture shifting by individuals with spinal cord injury standing with functional neuromuscular stimulation. In this experimental feasibility study, the controller modulated activation to the paralyzed lower extremity muscles as a function of the position of overall center of pressure (CoP), which was prescribed to move in a straight line in forward and diagonal directions. Posture-dependent control of stimulation enabled leaning movements that translated the CoP up to 48 mm away from the nominal position during quiet standing. The mean 95% prediction ellipse area, a measure of the CoP dispersion in the forward, forward-right, and forward-left directions, was 951.0 ± 341.1 mm2, 1095.9 ± 251.2 mm2, and 1364.5 ± 688.2 mm2, respectively. The average width of the prediction ellipses across the three directions was 15.1 mm, indicating that the CoP deviated from the prescribed path as task-dependent postures were assumed. The average maximal UE effort required to adjust posture across all leaning directions was 24.1% body weight, which is only slightly more than twice of what is required to maintain balance in an erect standing posture. These preliminary findings suggest that stimulation can be modulated to effectively assume user-specified, task-dependent leaning postures characterized by the CoP shifts that deviate away from the nominal position and which require moderate UE effort to execute.

3.
Med Biol Eng Comput ; 56(2): 317-330, 2018 Feb.
Article in English | MEDLINE | ID: mdl-28736791

ABSTRACT

This study systematically explored the potential of applying feedback control of functional neuromuscular stimulation (FNS) for stabilizing various erect and leaning standing postures after spinal cord injury (SCI). Perturbations ranging from 2 to 6% body weight were applied to two subjects with motor complete thoracic level SCI who were proficient at standing with implanted multichannel neural stimulators to activate the ankle, knee, hip and trunk muscles. The subjects stood with four different postures: erect, forward, forward-right and forward-left. Repeatable and controlled perturbations were applied in the forward, backward, rightward and leftward directions by linear actuators pulling on ropes attached to the subjects via a belt worn just above the waist. Upper extremity (UE) forces exerted on a stationary walker were measured with load cells attached to the handles. A feedback controller based on center of pressure (CoP) varied the stimulation levels to the otherwise paralyzed muscles so as to resist the effects of the perturbations. The effect of the feedback controller was compared to the case where only open-loop baseline stimulation was applied. This was done in terms of: (a) maximum resultant UE force exerted by the subjects on the walker, (b) maximum resultant CoP overshoot and (c) CoP root-mean-square deviation (RMSD). Feedback control resulted in significant reductions in the mean values of the majority of outcome values compared to baseline open-loop stimulation. Maximum resultant UE force was reduced by as much as 50% in one of the postures for one of the subjects. RMSD and maximum CoPs were reduced by as much as 75 and 70%, respectively, with feedback control. These results indicate that feedback control can be used to reject destabilizing disturbances in individuals with SCI using FNS not only for erect postures but also for leaning postures typically adopted during reaching while attempting various activities of daily living.


Subject(s)
Physical Therapy Modalities , Postural Balance , Spinal Cord Injuries/therapy , Activities of Daily Living , Female , Humans , Male , Middle Aged , Models, Theoretical , Muscle, Skeletal/physiology , Posture/physiology , Torso/physiology , Upper Extremity/physiology , Walkers
4.
J Neuroeng Rehabil ; 14(1): 54, 2017 06 10.
Article in English | MEDLINE | ID: mdl-28601095

ABSTRACT

BACKGROUND: Implanted motor system neuroprostheses can be effective at increasing personal mobility of persons paralyzed by spinal cord injuries. However, currently available neural stimulation systems for standing employ patterns of constant activation and are unreactive to changing postural demands. METHODS: In this work, we developed a closed-loop controller for detecting forward-directed body disturbances and initiating a stabilizing step in a person with spinal cord injury. Forward-directed pulls at the waist were detected with three body-mounted triaxial accelerometers. A finite state machine was designed and tested to trigger a postural response and apply stimulation to appropriate muscles so as to produce a protective step when the simplified jerk signal exceeded predetermined thresholds. RESULTS: The controller effectively initiated steps for all perturbations with magnitude between 10 and 17.5 s body weight, and initiated a postural response with occasional steps at 5% body weight. For perturbations at 15 and 17.5% body weight, the dynamic responses of the subject exhibited very similar component time periods when compared with able-bodied subjects undergoing similar postural perturbations. Additionally, the reactive step occurred faster for stronger perturbations than for weaker ones (p < .005, unequal varience t-test.) CONCLUSIONS: This research marks progress towards a controller which can improve the safety and independence of persons with spinal cord injury using implanted neuroprostheses for standing.


Subject(s)
Electric Stimulation , Neural Prostheses , Walking , Accelerometry , Algorithms , Biomechanical Phenomena , Electrodes, Implanted , Humans , Male , Middle Aged , Muscle, Skeletal , Paraplegia/rehabilitation , Physical Therapy Modalities , Postural Balance , Spinal Cord Injuries/rehabilitation
SELECTION OF CITATIONS
SEARCH DETAIL
...