Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Front Insect Sci ; 4: 1345139, 2024.
Article in English | MEDLINE | ID: mdl-38828261

ABSTRACT

Spodoptera frugiperda (J.E. Smith), fall armyworm (FAW), a polyphagous Noctuid pest, was first reported in Uganda in 2016. Farmers were trained to identify and manage the pest, but there was a lack of information on farmer knowledge, perceptions and practices deployed to control it. Therefore, we conducted a survey to assess maize farmers' knowledge, perceptions and management of the pest during the invasion. We interviewed 1,289 maize farmers from 10 maize-growing agro-ecological zones (AEZ) of Uganda using well-structured questionnaires. The data were analyzed using R version 4.2.3. The respondents faced many constraints, including pests, drought, poor soils and labor constraints. Among the pests, FAW was ranked by most (85%) of the respondents as the number one pest problem in maize, and some farmers reported having noticed it way back in 2014. By 2018, more than 90% of the farmers had seen or heard about FAW, and about 80% saw FAW in their fields. The most common FAW symptoms reported by maize farmers were windowing, near tunnel damage, and holes on the cobs. The developmental stages of FAW identified by farmers included eggs (10%), young larvae (78.7%), mature larvae (73.5%) and adult moths (6.7%). Insecticides were the major control tactic, although some farmers used plant extracts, hand-picking, sand, and ash. Farmers sourced information on FAW from various sources, including fellow farmers, radio/TV, extension agents, input dealers, print media, research and NGO extension. There is a need to package clear and uniform information for the farmers and to develop and promote a sustainable solution for FAW management, including harnessing biological control and cultural practices.

2.
Proc Biol Sci ; 290(2011): 20231401, 2023 Nov 29.
Article in English | MEDLINE | ID: mdl-37989245

ABSTRACT

Flowering phenology is important in the adaptation of many plants to their local environment, but its adaptive value has not been extensively studied in herbaceous perennials. We used Arabis alpina as a model system to determine the importance of flowering phenology to fitness of a herbaceous perennial with a wide geographical range. Individual plants representative of local genetic diversity (accessions) were collected across Europe, including in Spain, the Alps and Scandinavia. The flowering behaviour of these accessions was documented in controlled conditions, in common-garden experiments at native sites and in situ in natural populations. Accessions from the Alps and Scandinavia varied in whether they required exposure to cold (vernalization) to induce flowering, and in the timing and duration of flowering. By contrast, all Spanish accessions obligately required vernalization and had a short duration of flowering. Using experimental gardens at native sites, we show that an obligate requirement for vernalization increases survival in Spain. Based on our analyses of genetic diversity and flowering behaviour across Europe, we propose that in the model herbaceous perennial A. alpina, an obligate requirement for vernalization, which is correlated with short duration of flowering, is favoured by selection in Spain where the plants experience a long growing season.


Subject(s)
Arabis , Arabis/genetics , Flowers/genetics , Geography , Scandinavian and Nordic Countries , Europe
3.
PLoS One ; 18(2): e0277537, 2023.
Article in English | MEDLINE | ID: mdl-36787288

ABSTRACT

Assessing the genetic diversity of yam germplasm from different geographical origins for cultivation and breeding purposes is an essential step for crop genetic resource conservation and genetic improvement, especially where the crop faces minimal attention. This study aimed to classify the population structure, and assess the extent of genetic diversity in 207 Dioscorea rotundata genotypes sourced from three different geographical origins. A total of 4,957 (16.2%) single nucleotide polymorphism markers were used to assess genetic diversity. The SNP markers were informative, with polymorphic information content ranging from 0.238 to 0.288 and a mean of 0.260 across all the genotypes. The observed and expected heterozygosity was 0.12 and 0.23, respectively while the minor allele frequency ranged from 0.093 to 0.124 with a mean of 0.109. The principal coordinate analysis, model-based structure and discriminant analysis of principal components, and the Euclidean distance matrix method grouped 207 yam genotypes into three main clusters. Genotypes from West Africa (Ghana and Nigeria) had significant similarities with those from Uganda. Analysis of molecular variance revealed that within-population variation across three different geographical origins accounted for 93% of the observed variation. This study, therefore, showed that yam improvement in Uganda is possible, and the outcome will constitute a foundation for the genetic improvement of yams in Uganda.


Subject(s)
Dioscorea , Dioscorea/genetics , Phylogeny , Genetic Variation , Uganda , Plant Breeding , Ghana
4.
Front Plant Sci ; 13: 912332, 2022.
Article in English | MEDLINE | ID: mdl-35774822

ABSTRACT

Late leaf spot (LLS), caused by Nothopassalora personata (Berk. & M.A Curt.), and groundnut rosette disease (GRD), [caused by groundnut rosette virus (GRV)], represent the most important biotic constraints to groundnut production in Uganda. Application of visual scores in selection for disease resistance presents a challenge especially when breeding experiments are large because it is resource-intensive, subjective, and error-prone. High-throughput phenotyping (HTP) can alleviate these constraints. The objective of this study is to determine if HTP derived indices can replace visual scores in a groundnut breeding program in Uganda. Fifty genotypes were planted under rain-fed conditions at two locations, Nakabango (GRD hotspot) and NaSARRI (LLS hotspot). Three handheld sensors (RGB camera, GreenSeeker, and Thermal camera) were used to collect HTP data on the dates visual scores were taken. Pearson correlation was made between the indices and visual scores, and logistic models for predicting visual scores were developed. Normalized difference vegetation index (NDVI) (r = -0.89) and red-green-blue (RGB) color space indices CSI (r = 0.76), v* (r = -0.80), and b* (r = -0.75) were highly correlated with LLS visual scores. NDVI (r = -0.72), v* (r = -0.71), b* (r = -0.64), and GA (r = -0.67) were best related to the GRD visual symptoms. Heritability estimates indicated NDVI, green area (GA), greener area (GGA), a*, and hue angle having the highest heritability (H 2 > 0.75). Logistic models developed using these indices were 68% accurate for LLS and 45% accurate for GRD. The accuracy of the models improved to 91 and 84% when the nearest score method was used for LLS and GRD, respectively. Results presented in this study indicated that use of handheld remote sensing tools can improve screening for GRD and LLS resistance, and the best associated indices can be used for indirect selection for resistance and improve genetic gain in groundnut breeding.

5.
Insects ; 12(7)2021 Jul 01.
Article in English | MEDLINE | ID: mdl-34357264

ABSTRACT

High populations of species in the whitefly complex Bemisia tabaci Gennadius (Hemiptera: Aleyrodidae) were reported to cause severe damage to cassava in East and Central Africa. However, reasons for B. tabaci population increases are not well understood. We investigated the effect of cassava morphological traits, temperature, rainfall and relative humidity (RH) on the abundance of B. tabaci. Five cassava genotypes with varying levels of resistance to cassava mosaic disease, cassava brown streak disease, and B. tabaci infestation were planted in three Ugandan agro-ecological zones. The experiment was conducted in 2016 and 2017 in a randomized complete block design. Across all locations, the tallest genotype Alado alado supported the lowest number of B. tabaci adults. In areas with high B. tabaci prevalence, leaf area, leaf lobe width, and leaf lobe number exhibited significant positive effects (p < 0.001) on B. tabaci adult count. Positive effects of relative humidity and negative effects of temperature and rainfall on B. tabaci adult and nymph counts were observed in 2016 and 2017, resulting in low populations in Lira. Evidently, temperatures of 28-30 °C, rainfall of 30-150 mm and RH of 55-70%, and deployment of cassava genotypes of low plant height, large leaf area, and lobe width significantly enhanced B. tabaci population growth.

6.
Plants (Basel) ; 10(1)2020 Dec 24.
Article in English | MEDLINE | ID: mdl-33374402

ABSTRACT

Genomic selection (GS) can accelerate variety improvement when training set (TS) size and its relationship with the breeding set (BS) are optimized for prediction accuracies (PAs) of genomic prediction (GP) models. Sixteen GP algorithms were run on phenotypic best linear unbiased predictors (BLUPs) and estimators (BLUEs) of resistance to both fall armyworm (FAW) and maize weevil (MW) in a tropical maize panel. For MW resistance, 37% of the panel was the TS, and the BS was the remainder, whilst for FAW, random-based training sets (RBTS) and pedigree-based training sets (PBTSs) were designed. PAs achieved with BLUPs varied from 0.66 to 0.82 for MW-resistance traits, and for FAW resistance, 0.694 to 0.714 for RBTS of 37%, and 0.843 to 0.844 for RBTS of 85%, and these were at least two-fold those from BLUEs. For PBTS, FAW resistance PAs were generally higher than those for RBTS, except for one dataset. GP models generally showed similar PAs across individual traits whilst the TS designation was determinant, since a positive correlation (R = 0.92***) between TS size and PAs was observed for RBTS, and for the PBTS, it was negative (R = 0.44**). This study pioneered the use of GS for maize resistance to insect pests in sub-Saharan Africa.

7.
BMC Plant Biol ; 20(1): 3, 2020 Jan 02.
Article in English | MEDLINE | ID: mdl-31898489

ABSTRACT

BACKGROUND: Continuous storage root formation and bulking (CSRFAB) in sweetpotato is an important trait from agronomic and biological perspectives. Information about the molecular mechanisms underlying CSRFAB traits is lacking. RESULTS: Here, as a first step toward understanding the genetic basis of CSRFAB in sweetpotato, we performed a genome-wide association study (GWAS) using phenotypic data from four distinct developmental stages and 33,068 single nucleotide polymorphism (SNP) and insertion-deletion (indel) markers. Based on Bonferroni threshold (p-value < 5 × 10- 7), we identified 34 unique SNPs that were significantly associated with the complex trait of CSRFAB at 150 days after planting (DAP) and seven unique SNPs associated with discontinuous storage root formation and bulking (DCSRFAB) at 90 DAP. Importantly, most of the loci associated with these identified SNPs were located within genomic regions (using Ipomoea trifida reference genome) previously reported for quantitative trait loci (QTL) controlling similar traits. Based on these trait-associated SNPs, 12 and seven candidate genes were respectively annotated for CSRFAB and DCSRFAB traits. Congruent with the contrasting and inverse relationship between discontinuous and continuous storage root formation and bulking, a DCSRFAB-associated candidate gene regulates redox signaling, involved in auxin-mediated lateral root formation, while CSRFAB is enriched for genes controlling growth and senescence. CONCLUSION: Candidate genes identified in this study have potential roles in cell wall remodeling, plant growth, senescence, stress, root development and redox signaling. These findings provide valuable insights into understanding the functional networks to develop strategies for sweetpotato yield improvement. The markers as well as candidate genes identified in this pioneering research for CSRFAB provide important genomic resources for sweetpotato and other root crops.


Subject(s)
Ipomoea batatas/genetics , Plant Roots/genetics , Plant Roots/metabolism , Genes, Plant , Genome, Plant , Genome-Wide Association Study , Indoleacetic Acids/metabolism , Oxidation-Reduction , Plant Growth Regulators/genetics , Plant Growth Regulators/metabolism , Plant Roots/growth & development , Polymorphism, Single Nucleotide , Quantitative Trait Loci
8.
Afr J Biotechnol ; 18(29)2019.
Article in English | MEDLINE | ID: mdl-33281892

ABSTRACT

Anthracnose (Colletotrichum lindemuthianum), Angular leaf spot (Pseudocercospora griseola) and Pythium root rot are important pathogens affecting common bean production in the tropics. A promising strategy to manage these diseases consists of combining several resistance (R) genes into one cultivar. The aim of the study was to determine genetic linkage between gene pairs, Co-42 /Phg-2, on bean-chromosome Pv08 and Co-5/"P.ult" on-chromosome Pv07, to increase the efficiency of dual selection of resistance genes for major bean diseases, with molecular markers. The level of recombination was determined by tracking molecular markers for both BC3F6 and F2 generations. Recombination fraction r, among gene pairs, the likelihood of linkage, L(r), and logarithm of odds (LOD) scores were computed using the statistical relationship of likelihood which assumes a binomial distribution. The SCAR marker pair SAB3/PYAA19 for the gene pair Co-5/"P.ult" exhibited moderate linkage (r = 32 cM with a high LOD score of 9.2) for BC3F6 population, but relatively stronger linkage for the F2 population (r = 21 cM with a high LOD score of 18.7). However, the linkage among SCAR marker pair SH18/SN02, for the gene pair Co-42 /Phg-2 was incomplete for BC3F6 population (r = 47 cM with a low LOD score of 0.16) as well as F2 population (r = 44 cM with a low LOD score of 0.7). Generally, the weak or incomplete genetic linkage between marker pairs studied showed that all the four genes mentioned earlier have to be tagged with a corresponding linked marker during selection. The approaches used in this study will contribute to two loci linkage mapping techniques in segregating plant populations.

9.
Gates Open Res ; 3: 83, 2019.
Article in English | MEDLINE | ID: mdl-32537562

ABSTRACT

This study investigated the phenotypic variation of continuous storage root formation and bulking (CSRFAB) growth patterns underlying the development of sweetpotato genotypes for identification of potential varieties adapted to piecemeal harvesting for small scale farmers. The research was conducted between September 2016 and August 2017 in Uganda. Genotypes from two distinct sweetpotato genepool populations (Population Uganda A and Population Uganda B) comprising 130 genotypes, previously separated using 31 simple sequence repeat (SSR) markers were used. Measurements (4 harvest times with 4 plants each) were repeated on genotypes in a randomized complete block design with 2 replications in 2 locations for 2 seasons. We developed a scoring scale of 1 to 9 and used it to compare growth changes between consecutive harvests. Data analysis was done using residual or restricted maximum likelihood (REML). Data showed a non-linear growth pattern within and between locations, seasons, and genotypes for most traits. Some genotypes displayed early initiation and increase of bulking, while others showed late initiation. Broad sense heritability of CSRFAB was low due to large GxE interactions but higher in other traits  probably due to high genetic influence and the effectiveness of the methodology. A high level of reproducibility (89%) was observed comparing 2016B and 2017A seasons (A and B are first and second season, respectively) at the National Crops Resources Research Institute (NaCRRI), Namulonge, Uganda. Choosing CSRFAB genotypes can more than double the sweetpotato production (average maximum yield of 13.1 t/ha for discontinuous storage root formation and bulking (DSRFAB) versus 28.6 t/ha for CSRFAB, demonstrating the importance of this underresearched component of storage root yield.

10.
Front Plant Sci ; 9: 895, 2018.
Article in English | MEDLINE | ID: mdl-30026746

ABSTRACT

Combinatorial insect attacks on maize leaves, stems, and kernels cause significant yield losses and mycotoxin contaminations. Several small effect quantitative trait loci (QTL) control maize resistance to stem borers and storage pests and are correlated with secondary metabolites. However, efficient use of QTL in molecular breeding requires a synthesis of the available resistance information. In this study, separate meta-analyses of QTL of maize response to stem borers and storage pests feeding on leaves, stems, and kernels along with maize cell wall constituents discovered in these tissues generated 24 leaf (LIR), 42 stem (SIR), and 20 kernel (KIR) insect resistance meta-QTL (MQTL) of a diverse genetic and geographical background. Most of these MQTL involved resistance to several insect species, therefore, generating a significant interest for multiple-insect resistance breeding. Some of the LIR MQTL such as LIR4, 17, and 22 involve resistance to European corn borer, sugarcane borer, and southwestern corn borer. Eleven out of the 42 SIR MQTL related to resistance to European corn borer and Mediterranean corn borer. There KIR MQTL, KIR3, 15, and 16 combined resistance to kernel damage by the maize weevil and the Mediterranean corn borer and could be used in breeding to reduce insect-related post-harvest grain yield loss and field to storage mycotoxin contamination. This meta-analysis corroborates the significant role played by cell wall constituents in maize resistance to insect since the majority of the MQTL contain QTL for members of the hydroxycinnamates group such as p-coumaric acid, ferulic acid, and other diferulates and derivates, and fiber components such as acid detergent fiber, neutral detergent fiber, and lignin. Stem insect resistance MQTL display several co-localization between fiber and hydroxycinnamate components corroborating the hypothesis of cross-linking between these components that provide mechanical resistance to insect attacks. Our results highlight the existence of combined-insect resistance genomic regions in maize and set the basis of multiple-pests resistance breeding.

11.
Proc Natl Acad Sci U S A ; 115(4): 816-821, 2018 01 23.
Article in English | MEDLINE | ID: mdl-29301967

ABSTRACT

Plant mating systems have profound effects on levels and structuring of genetic variation and can affect the impact of natural selection. Although theory predicts that intermediate outcrossing rates may allow plants to prevent accumulation of deleterious alleles, few studies have empirically tested this prediction using genomic data. Here, we study the effect of mating system on purifying selection by conducting population-genomic analyses on whole-genome resequencing data from 38 European individuals of the arctic-alpine crucifer Arabis alpina We find that outcrossing and mixed-mating populations maintain genetic diversity at similar levels, whereas highly self-fertilizing Scandinavian A. alpina show a strong reduction in genetic diversity, most likely as a result of a postglacial colonization bottleneck. We further find evidence for accumulation of genetic load in highly self-fertilizing populations, whereas the genome-wide impact of purifying selection does not differ greatly between mixed-mating and outcrossing populations. Our results demonstrate that intermediate levels of outcrossing may allow efficient selection against harmful alleles, whereas demographic effects can be important for relaxed purifying selection in highly selfing populations. Thus, mating system and demography shape the impact of purifying selection on genomic variation in A. alpina These results are important for an improved understanding of the evolutionary consequences of mating system variation and the maintenance of mixed-mating strategies.


Subject(s)
Arabis/genetics , Selection, Genetic , Self-Fertilization , Europe , Geography , Mutation , Polymorphism, Single Nucleotide , Whole Genome Sequencing
SELECTION OF CITATIONS
SEARCH DETAIL
...