Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
1.
Parasit Vectors ; 15(1): 416, 2022 Nov 09.
Article in English | MEDLINE | ID: mdl-36352453

ABSTRACT

BACKGROUND: Malaria in western Kenya is currently characterized by sustained high Plasmodial transmission and infection resurgence, despite positive responses in some areas following intensified malaria control interventions since 2006. This study aimed to evaluate long-term changes in malaria transmission profiles and to assess patterns of asymptomatic malaria infections in school children aged 5-15 years at three sites in western Kenya with heterogeneous malaria transmission and simultaneous malaria control interventions. METHODS: The study was conducted from 2018 to 2019 and is based on data taken every third year from 2005 to 2014 during a longitudinal parasitological and mosquito adult surveillance and malaria control programme that was initiated in 2002 in the villages of Kombewa, Iguhu, and Marani. Plasmodium spp. infections were determined using microscopy. Mosquito samples were identified to species and host blood meal source and sporozoite infections were assayed using polymerase chain reaction. RESULTS: Plasmodium falciparum was the only malaria parasite evaluated during this study (2018-2019). Asymptomatic malaria parasite prevalence in school children decreased in all sites from 2005 to 2008. However, since 2011, parasite prevalence has resurged by > 40% in Kombewa and Marani. Malaria vector densities showed similar reductions from 2005 to 2008 in all sites, rose steadily until 2014, and decreased again. Overall, Kombewa had a higher risk of infection compared to Iguhu (χ2 = 552.52, df = 1, P < 0.0001) and Marani (χ2 = 1127.99, df = 1, P < 0.0001). There was a significant difference in probability of non-infection during malaria episodes (log-rank test, χ2 = 617.59, df = 2, P < 0.0001) in the study sites, with Kombewa having the least median time of non-infection during malaria episodes. Gender bias toward males in infection was observed (χ2 = 27.17, df = 1, P < 0.0001). The annual entomological inoculation rates were 5.12, 3.65, and 0.50 infective bites/person/year at Kombewa, Iguhu, and Marani, respectively, during 2018 to 2019. CONCLUSIONS: Malaria prevalence in western Kenya remains high and has resurged in some sites despite continuous intervention efforts. Targeting malaria interventions to those with asymptomatic infections who serve as human reservoirs might decrease malaria transmission and prevent resurgences. Longitudinal monitoring enables detection of changes in parasitological and entomological profiles and provides core baseline data for the evaluation of vector interventions and guidance for future planning of malaria control.


Subject(s)
Anopheles , Malaria, Falciparum , Malaria , Child , Animals , Female , Humans , Male , Kenya/epidemiology , Anopheles/physiology , Prospective Studies , Mosquito Vectors , Sexism , Malaria, Falciparum/parasitology , Plasmodium falciparum
2.
Parasitol Res ; 121(12): 3529-3545, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36203064

ABSTRACT

Irrigation not only helps to improve food security but also creates numerous water bodies for mosquito production. This study assessed the effect of irrigation on malaria vector bionomics and transmission in a semi-arid site with ongoing malaria vector control program. The effectiveness of CDC light traps in the surveillance of malaria vectors was also evaluated relative to the human landing catches (HLCs) method. Adult mosquitoes were sampled in two study sites representing irrigated and non-irrigated agroecosystems in western Kenya using a variety of trapping methods. The mosquito samples were identified to species and assayed for host blood meal source and Plasmodium spp. sporozoite infection using polymerase chain reaction. Anopheles arabiensis was the dominant malaria vector in the two study sites and occurred in significantly higher densities in irrigated study site compared to the non-irrigated study site. The difference in indoor resting density of An. arabiensis during the dry and wet seasons was not significant. Other species, including An. funestus, An. coustani, and An. pharoensis, were collected. The An. funestus indoor resting density was 0.23 in irrigated study site while almost none of this species was collected in the non-irrigated study site. The human blood index (HBI) for An. arabiensis in the irrigated study site was 3.44% and significantly higher than 0.00% for the non-irrigated study site. In the irrigated study site, the HBI of An. arabiensis was 3.90% and 5.20% indoor and outdoor, respectively. The HBI of An. funestus was 49.43% and significantly higher compared to 3.44% for An. arabiensis in the irrigated study site. The annual entomologic inoculation rate for An. arabiensis in the irrigated study site was 0.41 and 0.30 infective bites/person/year indoor and outdoor, respectively, whereas no transmission was observed in the non-irrigated study site. The CDC light trap performed consistently with HLC in terms of vector density. These findings demonstrate that irrigated agriculture may increase the risk of malaria transmission in irrigated areas compared to the non-irrigated areas and highlight the need to complement the existing malaria vector interventions with novel tools targeting the larvae and both indoor and outdoor biting vector populations.


Subject(s)
Anopheles , Malaria , Adult , Animals , Humans , Kenya/epidemiology , Mosquito Vectors , Ecology , Mosquito Control/methods
3.
PLoS One ; 16(12): e0261218, 2021.
Article in English | MEDLINE | ID: mdl-34890445

ABSTRACT

A recent research study on prevalence of tick-borne pathogens in Burundi reported high prevalence and endemicity of Theileria parva, Anaplasma marginale and Babesia bigemina infections in cattle. Detailed information about tick species infesting animals, their distribution and genetic diversity in Burundi is outdated and limited. This study therefore assessed the prevalence and genetic diversity of tick species infesting cattle across agroecological zones (AEZs) in Burundi. A cross-sectional study on the occurrence of tick species was conducted in 24 districts of Burundi between October and December 2017. Differential identification and characterization of ticks collected was conducted using tick morphological keys and molecular tools (cox1 and 12S rRNA gene). Chi-square test was used to test for association between agroecological zones and the prevalence of tick species. Phylogenetic relationships were inferred using bayesian and maximum likelihood algorithms. A total of 483 ticks were collected from the five AEZs sampled. Six tick species comprising of Rhipicephalus appendiculatus, R. sanguineus, R. evertsi evertsi, R. microplus, R. decoloratus and Amblyomma variegatum were observed. Rhipicephalus appendiculatus were the most prevalent ticks (~45%). A total of 138 specimens (28%) were found to be Rhipicephalus microplus, suggesting an emerging threat for cattle farmers. Twelve R. appendiculatus cox1 haplotypes were obtained from 106 specimens that were sequenced. Two cox1 haplotypes of R. microplus which clustered into previously reported Clade A were observed. Rhipicephalus sanguineus and R. evertsi evertsi ticks, the vectors of numerous zoonotic pathogens, were collected from cattle, which constitute a high risk for public health. These findings reveal an overlapping distribution of tick vectors in Burundi. The design of ticks and tick-borne diseases control strategies should consider the distribution of different vectors across the AEZs particularly the presence of the highly invasive R. microplus tick in Burundi and the potential risk of introducing the pathogenic Babesia bovis.


Subject(s)
Cattle Diseases/epidemiology , Cattle Diseases/parasitology , Rhipicephalus/physiology , Tick Infestations/veterinary , Animals , Burundi/epidemiology , Cattle , Cross-Sectional Studies , Female , Phylogeny , Prevalence , Tick Infestations/epidemiology , Tick Infestations/parasitology
4.
Vet Parasitol ; 291: 109371, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33621717

ABSTRACT

Theileria parva infections in cattle causes huge economic losses in the affected African countries, directly impacting the livelihood of the poor small-holder farmers. The current immunization protocol using live sporozoites in eastern Africa, is among the control measures designed to limit T. parva infections in cattle. However, the ability of the immune protection induced by this immunization to protect against field parasites has been compromised by the diversity of the parasite involving the schizont antigen genes. Previous studies have reported on the antigenic diversity of T. parva parasites from southern and eastern Africa, however, similar reports on T. parva parasites particularly from cattle from southern Africa remains scanty, due to the self-limiting nature of Corridor disease. Thus, we evaluated the diversity of CD8+ T-cell regions of ten schizont antigen genes in T. parva parasites associated with Corridor disease and East Coast fever (ECF) from southern and eastern Africa respectively. Regions of schizont antigen (TpAg) genes containing the CD8+ T-cell epitopes (CTL determinants) were amplified from genomic DNA extracted from blood of T. parva positive samples, cloned and sequenced. The results revealed limited diversity between the two parasite groups from cattle from southern and eastern Africa, defying the widely accepted notion that antigen-encoding loci in cattle-derived parasites are conserved, while in buffalo-derived parasites, they are extensively variable. This suggests that only a sub-population of parasites is successfully transmitted from buffalo to cattle, resulting in the limited antigenic diversity in Corridor disease parasites. Tp4, Tp5, Tp7 and Tp8 showed limited to absence of diversity in both parasite groups, suggesting the need to further investigate their immunogenic properties for consideration as candidates for a subunit vaccine. Distinct and common variants of Tp2 were detected among the ECF parasites from eastern Africa indicating evidence of parasite mixing following immunization. This study provides additional information on the comparative diversity of TpAg genes in buffalo- and cattle-derived T. parva parasites from cattle from southern and eastern Africa.


Subject(s)
Antigenic Variation , CD8 Antigens/genetics , Cattle Diseases/immunology , Cattle Diseases/parasitology , Theileria parva/genetics , Theileriasis/parasitology , Africa, Eastern , Africa, Southern , Animals , Cattle
5.
Parasit Vectors ; 14(1): 6, 2021 Jan 05.
Article in English | MEDLINE | ID: mdl-33402225

ABSTRACT

BACKGROUND: Tick-borne diseases (TBDs) constitute a major constraint for livestock development in sub-Saharan Africa, with East Coast fever (ECF) being the most devastating TBD of cattle. However, in Burundi, detailed information is lacking on the current prevalence of TBDs and on the associated economic losses from mortality and morbidity in cattle as well as the costs associated with TBD control and treatment. The aim of this study was, therefore, to assess the prevalence and spatial distribution of tick-borne pathogens (TBPs) in cattle across the major agro-ecological zones (AEZs) in Burundi. METHODS: In a cross-sectional study conducted in ten communes spanning the five main AEZs in Burundi, blood samples were taken from 828 cattle from 305 farms between October and December 2017. Evidence of Theileria parva infection was assessed by antibody level, measured using a polymorphic immunodominant molecule (PIM) antigen-based enzyme-linked immunosorbent assay (ELISA) and by a T. parva-specific p104 gene-based nested PCR. Antibodies against Theileria mutans infection were detected using the 32-kDa antigen-based indirect ELISA, while the 200-kDa antigen and the major surface protein 5 (MSP5)-based indirect ELISA were used to detect antibodies against Babesia bigemina and Anaplasma marginale, respectively. RESULTS: The prevalence of T. parva across the ten communes sampled ranged from 77.5 to 93.1% and from 67.8 to 90.0% based on the ELISA and PCR analysis, respectively. A statistically significant difference in infection was observed between calves and adult cattle; however, T. parva infection levels were not significantly associated with sex and breed. The seroprevalence indicating exposure to T. mutans, B. bigemina and A. marginale ranged from 30 to 92.1%, 33.7 to 90% and 50 to 96.2%, respectively. Mixed infections of TBPs were detected in 82.91% of cattle sampled, with 11 different combinations of pathogen species detected . CONCLUSIONS: The findings indicate that T. parva, A. marginale and B. bigemina infections are endemic in Burundi. Knowledge of the spatial distribution of TBPs will facilitate the design of effective targeted strategies to control these diseases. There is a need for further investigations of the distribution of tick vectors and the population structure of TBPs in order to identify the key epidemiological factors contributing to TBD outbreaks in Burundi.


Subject(s)
Anaplasmosis/epidemiology , Babesiosis/epidemiology , Cattle Diseases/epidemiology , Theileriasis/epidemiology , Tick-Borne Diseases/epidemiology , Ticks/parasitology , Anaplasma marginale/immunology , Anaplasmosis/transmission , Animal Distribution , Animals , Antibodies, Protozoan/blood , Babesia/immunology , Babesiosis/transmission , Burundi/epidemiology , Cattle , Cattle Diseases/parasitology , Cattle Diseases/transmission , Cross-Sectional Studies , Endemic Diseases , Female , Male , Prevalence , Seroepidemiologic Studies , Theileria parva/immunology , Theileriasis/immunology , Theileriasis/transmission , Tick-Borne Diseases/transmission
6.
Ticks Tick Borne Dis ; 11(6): 101539, 2020 11.
Article in English | MEDLINE | ID: mdl-32993948

ABSTRACT

The control of Theileria parva, a protozoan parasite that threatens almost 50% of the cattle population in Africa, is still a challenge in many affected countries. Theileria parva field parasites from eastern Africa, and parasites comprising the current live T. parva vaccine widely deployed in the same region have been reported to be genotypically diverse. However, similar reports on T. parva parasites from southern Africa are limited, especially in Corridor disease designated areas. Establishing the extent of genetic exchange in T. parva populations is necessary for effective control of the parasite infection. Twelve polymorphic microsatellite and minisatellite loci were targeted for genotypic and population genetics analysis of T. parva parasites from South Africa, Mozambique, Kenya and Uganda using genomic DNA prepared from cattle and buffalo blood samples. The results revealed genotypic similarities among parasites from the two regions of Africa, with possible distinguishing allelic profiles on three loci (MS8, MS19 and MS33) for parasites associated with Corridor disease in South Africa, and East Coast fever in eastern Africa. Individual populations were in linkage equilibrium (VDL) was observed. Genetic divergence was observed to be more within (AMOVA = 74%) than between (AMOVA = 26%) populations. Principal coordinate analysis showed clustering that separated buffalo-derived from cattle-derived T. parva parasites, although parasites from cattle showed a close genetic relationship. The results also demonstrated geographic sub-structuring of T. parva parasites based on the disease syndromes caused in cattle in the two regions of Africa. These findings provide additional information on the genotypic diversity of T. parva parasites from South Africa, and reveal possible differences based on three loci (MS8, MS19 and MS33) and similarities between buffalo-derived T. parva parasites from southern and eastern Africa.


Subject(s)
Cattle Diseases/parasitology , Genotype , Microsatellite Repeats , Minisatellite Repeats , Theileria parva/genetics , Theileriasis/parasitology , Africa, Eastern , Africa, Southern , Animals , Cattle , Genotyping Techniques/veterinary
7.
PLoS One ; 15(6): e0231434, 2020.
Article in English | MEDLINE | ID: mdl-32598384

ABSTRACT

East Coast fever (ECF) and Corridor disease (CD) caused by cattle- and buffalo-derived T. parva respectively are the most economically important tick-borne diseases of cattle in the affected African countries. The p67 gene has been evaluated as a recombinant subunit vaccine against ECF, and for discrimination of T. parva parasites causing ECF and Corridor disease. The p67 allele type 1 was first identified in cattle-derived T. parva parasites from East Africa, where parasites possessing this allele type have been associated with ECF. Subsequent characterization of buffalo-derived T. parva parasites from South Africa where ECF was eradicated, revealed the presence of a similar allele type, raising concerns as to whether or not allele type 1 from parasites from the two regions is identical. A 900 bp central fragment of the gene encoding p67 was PCR amplified from T. parva DNA extracted from blood collected from cattle and buffalo in South Africa, Mozambique, Kenya, Tanzania and Uganda, followed by DNA sequence analysis. Four p67 allele types previously described were identified. A subtype of p67 allele type 1 was identified in parasites from clinical cases of CD and buffalo from southern Africa. Notably, p67 allele type 1 sequences from parasites associated with ECF in East Africa and CD in Kenya were identical. Analysis of two p67 B-cell epitopes (TpM12 and AR22.7) revealed amino acid substitutions in allele type 1 from buffalo-derived T. parva parasites from southern Africa. However, both epitopes were conserved in allele type 1 from cattle- and buffalo-derived T. parva parasites from East Africa. These findings reveal detection of a subtype of p67 allele type 1 associated with T. parva parasites transmissible from buffalo to cattle in southern Africa.


Subject(s)
Alleles , Buffaloes/parasitology , Protozoan Proteins/genetics , Theileria parva/genetics , Amino Acid Sequence , Animals , Base Sequence , DNA, Protozoan/genetics , Genomics , Phylogeny , Polymerase Chain Reaction , Protozoan Proteins/chemistry , South Africa
8.
Parasit Vectors ; 13(1): 261, 2020 May 19.
Article in English | MEDLINE | ID: mdl-32430015

ABSTRACT

Equine theileriosis, a tick-transmitted disease caused by the hemoprotozoan parasites Theileria equi and Theileria haneyi, affects equids throughout tropical and subtropical regions of the world. It is a significant regulatory concern in non-endemic countries, where testing for equine theileriosis is required prior to horse import to prevent parasite entry. Within endemic areas, infection causes significant morbidity and mortality, leading to economic losses. No vaccine for equine theileriosis is available, and current drug treatment protocols are inconsistent and associated with significant side effects. Recent work has revealed substantial genetic variability among equine theileriosis organisms, and analysis of ribosomal DNA from affected animals around the world indicates that the organisms can be grouped into five distinct clades. As these diverse parasites are capable of infecting a wide range of both tick and mammalian hosts, movement of different equine Theileria species between endemic countries, and eventually into non-endemic countries, is a significant concern. Furthermore, the substantial genetic variability of these organisms will likely render currently utilized importation diagnostic tests unable to detect all equine Theileria spp. To this end, more complete characterization of these diverse parasites is critical to the continued global control of equine theileriosis. This review discusses current knowledge of equine Theileria spp. in this context, and highlights new opportunities and challenges for workers in this field.


Subject(s)
Horse Diseases/parasitology , Host Specificity , Mammals/parasitology , RNA, Ribosomal, 18S/genetics , Theileria/classification , Animals , Genetic Variation , Horses , Phylogeny , Theileriasis/parasitology
9.
Transbound Emerg Dis ; 67 Suppl 1: 88-98, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32174043

ABSTRACT

The live infection and treatment (ITM) vaccination procedure using the trivalent Muguga cocktail is increasingly being used to control East Coast fever, with potential implications for Theileria parva population genetic structure in the field. Transmission of the Kiambu V T. parva component to unvaccinated cattle has previously been described in Uganda. We monitored the T. parva carrier state in vaccinated and control animals on a farm in West Kenya where an ITM stabilate derived from the Kenyan T. parva Marikebuni stock was evaluated for field efficacy. A nested PCR-based Marikebuni-specific marker identified a carrier state in nine of ten vaccinated animals, detectable for a period of two years. We used 22 variable number tandem repeat (VNTR) markers to determine multilocus genotypes (MLGs) of 19 T. parva schizont-infected lymphocyte isolates derived from cattle and field ticks. Two isolates from unimmunized cattle were identical to the Marikebuni vaccination stock. Two cattle isolates were identical to a Muguga cocktail component Kiambu V. Seven isolates from ticks exhibited MLGs that were identical to the Serengeti/Muguga vaccine stocks. Six cattle and two tick-derived stocks exhibited unique MLGs. The data strongly suggest transmission of immunizing genotypes, from Marikebuni vaccine-induced carrier cattle to unimmunized cattle. It is possible that genotypes similar to those in the Muguga cocktail are present in the field in Western Kenya. An alternative hypothesis is that these parasites may have originated from vaccine trial sites in Eastern Uganda. If correct, this suggests that T. parva stocks used for immunization can potentially be disseminated 125 km beyond the immediate vaccination site. Regardless of their origin, the data provide evidence that genotypes similar to those in the Muguga cocktail are circulating in the field in East Africa, alleviating concerns about dissemination of 'alien' T. parva germplasm through live vaccination.


Subject(s)
Cattle Diseases/parasitology , Immunization/veterinary , Theileria parva/genetics , Theileriasis/parasitology , Tick-Borne Diseases/parasitology , Ticks/parasitology , Vaccination/veterinary , Animals , Cattle , Cattle Diseases/prevention & control , Cattle Diseases/transmission , Genotype , Kenya/epidemiology , Multilocus Sequence Typing/veterinary , Polymerase Chain Reaction/veterinary , Theileria parva/immunology , Theileriasis/prevention & control , Theileriasis/transmission , Tick-Borne Diseases/prevention & control , Tick-Borne Diseases/transmission , Uganda , Vaccines, Attenuated/immunology
10.
Parasit Vectors ; 12(1): 588, 2019 Dec 16.
Article in English | MEDLINE | ID: mdl-31842995

ABSTRACT

BACKGROUND: Theileria parva causes East Coast fever (ECF), one of the most economically important tick-borne diseases of cattle in sub-Saharan Africa. A live immunisation approach using the infection and treatment method (ITM) provides a strong long-term strain-restricted immunity. However, it typically induces a tick-transmissible carrier state in cattle and may lead to spread of antigenically distinct parasites. Thus, understanding the genetic composition of T. parva is needed prior to the use of the ITM vaccine in new areas. This study examined the sequence diversity and the evolutionary and biogeographical dynamics of T. parva within the African Great Lakes region to better understand the epidemiology of ECF and to assure vaccine safety. Genetic analyses were performed using sequences of two antigen-coding genes, Tp1 and Tp2, generated among 119 T. parva samples collected from cattle in four agro-ecological zones of DRC and Burundi. RESULTS: The results provided evidence of nucleotide and amino acid polymorphisms in both antigens, resulting in 11 and 10 distinct nucleotide alleles, that predicted 6 and 9 protein variants in Tp1 and Tp2, respectively. Theileria parva samples showed high variation within populations and a moderate biogeographical sub-structuring due to the widespread major genotypes. The diversity was greater in samples from lowlands and midlands areas compared to those from highlands and other African countries. The evolutionary dynamics modelling revealed a signal of selective evolution which was not preferentially detected within the epitope-coding regions, suggesting that the observed polymorphism could be more related to gene flow rather than recent host immune-based selection. Most alleles isolated in the Great Lakes region were closely related to the components of the trivalent Muguga vaccine. CONCLUSIONS: Our findings suggest that the extensive sequence diversity of T. parva and its biogeographical distribution mainly depend on host migration and agro-ecological conditions driving tick population dynamics. Such patterns are likely to contribute to the epidemic and unstable endemic situations of ECF in the region. However, the fact that ubiquitous alleles are genetically similar to the components of the Muguga vaccine together with the limited geographical clustering may justify testing the existing trivalent vaccine for cross-immunity in the region.


Subject(s)
Antigenic Variation , Antigens, Protozoan/genetics , Theileria parva/genetics , Africa, Central , Antigens, Protozoan/immunology , Genotype , Polymorphism, Genetic , Sequence Analysis, DNA , Theileria parva/immunology
11.
J Zoo Wildl Med ; 50(2): 342-349, 2019 Jun 13.
Article in English | MEDLINE | ID: mdl-31260199

ABSTRACT

Mountain bongo (Tragelaphus euryceros isaaci) from Kenya were exported to zoological institutions in North America and Europe in the 1970s and 1980s. In the following 20-30 years bongo numbers declined in Kenya and the Mountain Bongo Repatriation Project was launched. This resulted in 18 adult bongo, descendants of the original translocated bongo, being repatriated from the United States to Kenya in 2004. These newly arrived bongo were inadvertently exposed to heavy tick infestation on release in a conservancy on the slopes of Mount Kenya. Mortality and morbidity occurred during the third week after arrival. Theileria sp. infection was apparent from the history, clinical signs, and necropsy findings, and Theileria-like parasites were detected microscopically in samples from sick and dead animals. Four bongo died before the outbreak was controlled. In order to identify the Theileria parasite conclusively, molecular amplification techniques were used. A combination of reverse line blotting, with small subunit ribosomal RNA (SSU rRNA) polymerase chain reaction (PCR) amplification and nucleotide sequencing, identified the protozoan parasite Theileria taurotragi, suggesting this as the most probable cause of mortality and morbidity in the repatriated bongo.


Subject(s)
Antelopes/parasitology , Naphthoquinones/therapeutic use , Theileria/isolation & purification , Theileriasis/parasitology , Animals , Antiprotozoal Agents/therapeutic use , Conservation of Natural Resources , Disease Outbreaks/veterinary , Female , Kenya/epidemiology , Male , Oxytetracycline , Theileriasis/drug therapy , Theileriasis/epidemiology , Theileriasis/mortality
12.
Int J Parasitol ; 48(9-10): 679-690, 2018 08.
Article in English | MEDLINE | ID: mdl-29885436

ABSTRACT

A novel apicomplexan parasite was serendipitously discovered in horses at the United States - Mexico border. Phylogenetic analysis based on 18S rDNA showed the erythrocyte-infective parasite to be related to, but distinct from, Theileria spp. in Africa, the most similar taxa being Theileria spp. from waterbuck and mountain zebra. The degree of sequence variability observed at the 18S rDNA locus also suggests the likely existence of additional cryptic species. Among described species, the genome of this novel equid Theileria parasite is most similar to that of Theileria equi, also a pathogen of horses. The estimated divergence time between the new Theileria sp. and T. equi, based on genomic sequence data, is greater than 33 million years. Average protein sequence divergence between them, at 23%, is greater than that of Theileria parva and Theileria annulata proteins, which is 18%. The latter two represent highly virulent Theileria spp. of domestic cattle, as well as of African and Asian wild buffalo, respectively, which differ markedly in pathology, host cell tropism, tick vector and geographical distribution. The extent of genome-wide sequence divergence, as well as significant morphological differences, relative to T. equi justify the classification of Theileria sp. as a new taxon. Despite the overall genomic divergence, the nine member equi merozoite antigen (EMA) superfamily, previously found as a multigene family only in T. equi, is also present in the novel parasite. Practically, significant sequence divergence in antigenic loci resulted in this undescribed Theileria sp. not being detectable using currently available diagnostic tests. Discovery of this novel species infective to equids highlights exceptional diversity within the genus Theileria, a finding with serious implications for apicomplexan parasite surveillance.


Subject(s)
Genomics , Horse Diseases/parasitology , Theileria/genetics , Theileriasis/parasitology , Animals , DNA, Protozoan/genetics , Evolution, Molecular , Female , Horses , Male , Phylogeny , RNA, Ribosomal, 18S/genetics , Theileria/isolation & purification , Theileria/pathogenicity , Virulence
13.
Ticks Tick Borne Dis ; 9(4): 806-813, 2018 05.
Article in English | MEDLINE | ID: mdl-29534988

ABSTRACT

Theileria parva is a parasitic protozoan that causes East Coast fever (ECF), an economically important disease of cattle in eastern, central and southern Africa. In South Sudan, ECF is considered a major constraint for livestock development in regions where the disease is endemic. To obtain insights into the dynamics of T. parva in South Sudan, population genetic analysis was performed. Out of the 751 samples included in this study, 178 blood samples were positive for T. parva by species-specific PCR, were collected from cattle from four regions in South Sudan (Bor = 62; Juba = 45; Kajo keji = 41 and Yei = 30) were genotyped using 14 microsatellite markers spanning the four chromosomes. The T. parva Muguga strain was included in the study as a reference. Linkage disequilibrium was evident when populations from the four regions were treated as a single entity, but, when populations were analyzed separately, linkage disequilibrium was observed in Bor, Juba and Kajo keji. Juba region had a higher multiplicity of infection than the other three regions. Principal components analysis revealed a degree of sub-structure between isolates from each region, suggesting that populations are partially distinct, with genetic exchange and gene flow being limited between parasites in the four geographically separated populations studied. Panmixia was observed within individual populations. Overall T. parva population genetic analyses of four populations in South Sudan exhibited a low level of genetic exchange between the populations, but a high level of genetic diversity within each population.


Subject(s)
Genetic Variation , Theileria parva/genetics , Theileriasis/epidemiology , Animals , Cattle/parasitology , Gene Flow , Genotype , Genotyping Techniques , Linkage Disequilibrium , Microsatellite Repeats , Polymerase Chain Reaction , South Sudan/epidemiology , Theileria parva/isolation & purification , Theileriasis/blood , Theileriasis/parasitology
14.
Parasit Vectors ; 9(1): 484, 2016 09 02.
Article in English | MEDLINE | ID: mdl-27589998

ABSTRACT

BACKGROUND: Rhipicephalus appendiculatus is the primary vector of Theileria parva, the etiological agent of East Coast fever (ECF), a devastating disease of cattle in sub-Saharan Africa. We hypothesized that a vaccine targeting tick proteins that are involved in attachment and feeding might affect feeding success and possibly reduce tick-borne transmission of T. parva. Here we report the evaluation of a multivalent vaccine cocktail of tick antigens for their ability to reduce R. appendiculatus feeding success and possibly reduce tick-transmission of T. parva in a natural host-tick-parasite challenge model. METHODS: Cattle were inoculated with a multivalent antigen cocktail containing recombinant tick protective antigen subolesin as well as two additional R. appendiculatus saliva antigens: the cement protein TRP64, and three different histamine binding proteins. The cocktail also contained the T. parva sporozoite antigen p67C. The effect of vaccination on the feeding success of nymphal and adult R. appendiculatus ticks was evaluated together with the effect on transmission of T. parva using a tick challenge model. RESULTS: To our knowledge, this is the first evaluation of the anti-tick effects of these antigens in the natural host-tick-parasite combination. In spite of evidence of strong immune responses to all of the antigens in the cocktail, vaccination with this combination of tick and parasite antigens did not appear to effect tick feeding success or reduce transmission of T. parva. CONCLUSION: The results of this study highlight the importance of early evaluation of anti-tick vaccine candidates in biologically relevant challenge systems using the natural tick-host-parasite combination.


Subject(s)
Antigens/immunology , Arachnid Vectors/parasitology , Arthropod Proteins/immunology , Rhipicephalus/parasitology , Theileria parva/physiology , Theileriasis/transmission , Animals , Antigens/genetics , Arachnid Vectors/immunology , Arachnid Vectors/physiology , Arthropod Proteins/genetics , Feeding Behavior , Humans , Immunity, Humoral , Mice , Rhipicephalus/immunology , Rhipicephalus/physiology , Theileriasis/parasitology
15.
J Parasitol Res ; 2015: 607432, 2015.
Article in English | MEDLINE | ID: mdl-26617992

ABSTRACT

African Animal Trypanosomiasis (AAT) transmitted cyclically by tsetse fly (Glossina spp.) is a major obstacle to livestock production in the tropical parts of Africa. The objective of this study was to determine the infection rates of trypanosomes in Glossina species in Mtito Andei Division, Makueni County, Kenya. Tsetse fly species, G. longipennis and G. pallidipes, were trapped and DNA was isolated from their dissected internal organs (proboscis, salivary glands, and midguts). The DNA was then subjected to a nested PCR assay using internal transcribed spacer primers and individual trypanosome species were identified following agarose gel electrophoresis. Out of the 117 flies trapped in the area 39 (33.3%) were teneral while 78 (67%) were nonteneral. G. pallidipes constituted the largest percentage of 58% while G. longipennis were 42%. The overall trypanosomes infection rate in all nonteneral Glossina spp. was 11.53% with G. longipennis recording the highest infection rate of 23.08% while G. pallidipes had an infection rate of 5.77%. T. vivax was the most infectious (10.26%) compared to T. congolense (1.28%). Mean apparent densities were strongly positively correlated with infection rates (r = 0.95) confirming the importance of this parameter as an indicator of AAT transmission risk.

16.
PLoS One ; 6(4): e19015, 2011 Apr 29.
Article in English | MEDLINE | ID: mdl-21559495

ABSTRACT

BACKGROUND: Theileria parva causes an acute fatal disease in cattle, but infections are asymptomatic in the African buffalo (Syncerus caffer). Cattle can be immunized against the parasite by infection and treatment, but immunity is partially strain specific. Available data indicate that CD8(+) T lymphocyte responses mediate protection and, recently, several parasite antigens recognised by CD8(+) T cells have been identified. This study set out to determine the nature and extent of polymorphism in two of these antigens, Tp1 and Tp2, which contain defined CD8(+) T-cell epitopes, and to analyse the sequences for evidence of selection. METHODOLOGY/PRINCIPAL FINDINGS: Partial sequencing of the Tp1 gene and the full-length Tp2 gene from 82 T. parva isolates revealed extensive polymorphism in both antigens, including the epitope-containing regions. Single nucleotide polymorphisms were detected at 51 positions (∼12%) in Tp1 and in 320 positions (∼61%) in Tp2. Together with two short indels in Tp1, these resulted in 30 and 42 protein variants of Tp1 and Tp2, respectively. Although evidence of positive selection was found for multiple amino acid residues, there was no preferential involvement of T cell epitope residues. Overall, the extent of diversity was much greater in T. parva isolates originating from buffalo than in isolates known to be transmissible among cattle. CONCLUSIONS/SIGNIFICANCE: The results indicate that T. parva parasites maintained in cattle represent a subset of the overall T. parva population, which has become adapted for tick transmission between cattle. The absence of obvious enrichment for positively selected amino acid residues within defined epitopes indicates either that diversity is not predominantly driven by selection exerted by host T cells, or that such selection is not detectable by the methods employed due to unidentified epitopes elsewhere in the antigens. Further functional studies are required to address this latter point.


Subject(s)
CD8-Positive T-Lymphocytes/cytology , CD8-Positive T-Lymphocytes/parasitology , Theileria parva/genetics , Theileriasis/parasitology , Animals , Buffaloes , Cattle , Cell Line , Epitopes/chemistry , Evolution, Molecular , Genetic Variation , Genotype , Open Reading Frames , Sequence Analysis, DNA , Species Specificity
17.
Parasitol Res ; 106(2): 357-65, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19902251

ABSTRACT

Theileria parva causes East Coast fever, an economically important disease of cattle in sub-Saharan Africa. We describe a nested polymerase chain reaction (nPCR) assay for the detection of T. parva DNA in cattle blood spotted onto filter paper using primers derived from the T. parva-specific 104-kDa antigen (p104) gene. The sensitivity of this assay was compared to a previously described p104-based PCR and also the reverse line blot (RLB) technique, using serial dilutions of blood from a calf with known T. parva piroplasm parasitaemia. The relative sensitivities of the three assays were 0.4, 1.4 and 4 parasites/microl corresponding to blood parasitaemias of 9.2 x 10(-6)%, 2.8 x 10(-5)% and 8.3 x 10(-5)%, respectively. The three assays were applied to samples from two calves infected with the T. parva Muguga stock. Parasite DNA was consistently detectable by the two p104 PCR assays until 48 and 82 days post-infection, respectively, and thereafter sporadically. RLB detected parasite DNA in the two infected calves until days 43 and 45. Field samples from 151 Kenyan cattle exhibited 37.7% positivity for T. parva by regular p104 PCR and 42.3% positivity using p104 nPCR. Among 169 cattle blood samples from Southern Sudan, 36% were positive for T. parva using nPCR. The nPCR assay represents a highly sensitive tool for detection and monitoring of asymptomatic carrier state infections of T. parva in the blood of cattle.


Subject(s)
Blood/parasitology , Carrier State/veterinary , DNA, Protozoan/isolation & purification , Polymerase Chain Reaction/methods , Theileria parva/isolation & purification , Theileriasis/diagnosis , Animals , Antigens, Protozoan/genetics , Carrier State/diagnosis , Cattle , DNA Primers/genetics , DNA, Protozoan/genetics , Sensitivity and Specificity , Specimen Handling/methods , Sudan , Theileria parva/genetics
18.
Vaccine ; 28(1): 261-9, 2009 Dec 10.
Article in English | MEDLINE | ID: mdl-19808026

ABSTRACT

The BM86 antigen, originally identified in Rhipicephalus (Boophilus) microplus, is the basis of the only commercialized anti-tick vaccine. The long-term goal of our study is to improve BM86 based vaccines by induction of high levels of tick gut binding antibodies that are also cross-reactive with a range of BM86 homologues expressed in other important tick species. Here we have used a BD86 derived synthetic peptide, BD86-3, to raise a series of mouse monoclonal antibodies. One of these mAbs, named 12.1, recognized BM86 homologues in immuno-histochemical analyses in four out of five tick species including R. (B.) microplus, Rhipicephalus (Boophilus) decoloratus, Hyalomma anatolicum anatolicum and Rhipicephalus appendiculatus. Our results indicate that broadly cross-reactive tick gut binding antibodies can be induced after immunization with a synthetic peptide derived from the protein BD86.


Subject(s)
Antibodies, Monoclonal/immunology , Membrane Glycoproteins/immunology , Peptides/immunology , Recombinant Proteins/immunology , Tick Infestations/prevention & control , Vaccines/immunology , Amino Acid Sequence , Animals , Cattle , Cross Reactions , Female , Humans , Hybridomas , Mice , Mice, Inbred BALB C , Molecular Sequence Data , Rhipicephalus/immunology , Sequence Alignment , Tick Infestations/immunology , Vaccines, Subunit/immunology , Vaccines, Virosome/immunology
19.
J Med Entomol ; 46(4): 888-94, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19645294

ABSTRACT

Theileria parva is the etiologic agent of East Coast fever, an economically important disease of cattle in sub-Saharan Africa. This protozoan parasite is biologically transmitted by Rhipicephalus appendiculatus (Neumann) (Acari: Ixodidae). An understanding of the vector-parasite interaction may aid the development of improved methods for controlling transmission. We developed quantitative polymerase chain reaction (qPCR) and nested PCR (nPCR) assays targeting the T. parva-specific p104 gene to study T. parva pathogenesis in two strains of R. appendiculatus that had previously been selected to be relatively more (Kiambu) or less (Muguga) susceptible to infection. Nymphs from both strains were fed simultaneously to repletion on acutely infected calves. Nymphs from the Kiambu strain showed significantly higher engorgement weights compared with Muguga strain nymphs. Immediately after engorgement qPCR confirmed that nymphal Kiambu ticks had significantly higher parasite loads at repletion than Muguga nymphs. By 12 d postengorgement, parasites were below quantifiable levels but could be detected by nPCR in 83-87% (Muguga and Kiambu, respectively) of nymphs. After the molt, adult feeding on naïve cattle stimulated parasite replication in the salivary glands. PCR detected significantly more infected ticks than microscopy, and there was a significant difference between the two tick strains both in the proportion of ticks that develop salivary gland infections, and in the number of parasites within infected salivary glands. These data confirm that although both tick strains were competent vectors, Kiambu is both a significantly more susceptible and a more efficient host for T. parva than Muguga. The mechanisms that contribute to the levels of susceptibility and efficiency are unknown; however, this study lays the groundwork for a comparison of the transcriptome of these tick strains, the next step toward discovering the genes involved in the tick-parasite interaction.


Subject(s)
Rhipicephalus/parasitology , Theileria parva/physiology , Animals , Cattle/parasitology , Host-Parasite Interactions/genetics , Nymph/genetics , Nymph/parasitology , Polymerase Chain Reaction , Rhipicephalus/genetics , Salivary Glands/parasitology , Species Specificity , Theileria parva/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...