Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 874: 162560, 2023 May 20.
Article in English | MEDLINE | ID: mdl-36870488

ABSTRACT

Impacts of land cover conversion have been studied well from the top-of-canopy level using satellite observations. Yet, the warming or cooling impacts of land cover and management change (LCMC) from below-canopy level remain less explored. Here, we studied the below-canopy temperature change from field to landscape level across multiple LCMC in southeastern Kenya. To study this, in situ microclimate sensors, satellite observations, and high-resolution below-canopy temperature modelling approaches were used. Our results show that from field to landscape scale, forest to cropland conversion, followed by thicket to cropland change, generate higher surface temperature warming than other conversion types. At field scale, tree loss increases the mean soil temperature (measured at 6 cm below ground) more than the mean below-canopy surface temperature but its impact on the diurnal temperature range was higher on surface temperature than soil temperature in both forest to cropland and thicket to cropland/grassland conversions. At landscape scale, compared with top-of-canopy land surface temperature warming, which was estimated at Landsat overpass time (∼10:30 a.m.), forest to cropland conversion generates ∼3 °C higher below-canopy surface temperature warming. Land management change, through fencing of wildlife conservation areas and limiting mobility of mega browsers, can have an impact on woody cover and induce more below-canopy surface temperature warming than top-of-canopy in comparison with non-conservancy areas. These results indicate that human induced land changes can generate more below-canopy warming than inferred from top-of-canopy satellite observations. Together, the results highlight the importance of considering the climatic impacts of LCMC from both top-of-canopy and below-canopy level for effective mitigation of anthropogenic warming from land surface changes.

2.
Sci Total Environ ; 682: 19-30, 2019 Sep 10.
Article in English | MEDLINE | ID: mdl-31108267

ABSTRACT

The Lake Naivasha Basin in Kenya has experienced significant land use cover changes (LUCC) that has been hypothesized to have altered the hydrological regime in recent decades. While it is generally recognized that LUCC will impact evapotranspiration (ET), the precise nature of such impact is not very well understood. This paper describes how land use conversions among grassland and croplands have influenced ET in the Lake Naivasha Basin for the period 2003 to 2012. MODIS data products were used in combination with the European Centre for Medium-Range Weather Forecasts (ECMWF) data sets to model ET using the Surface Energy Balance System (SEBS). The results indicate that conversions from grassland to cropland accounted for increases in ET of up to 12% while conversion from cropland back to grasslands (abandonment) reduced ET by ~4%. This suggests that recently cultivated agricultural lands could increase local water demands, while abandonment of the farms could decrease the water loss and eventually increase the water availability. Also, recovery of ET following re-conversion from cropland to grassland might be impeded due to delayed recovery of soil properties since parts of the catchment are continuously being transformed with no ample time given for soil recovery. The annual ET over the 10 years shows an estimated decline from 724 mm to 650 mm (~10%). This decline is largely explained by a reduction in net radiation, an increase in actual vapour pressure whose net effect also led to decrease in the surface-air temperature difference. These findings suggest that in order to better understand LUCC effects on water resources of Lake Naivasha, it is important to take into account the effect of LUCC and climate because large scale changes of vegetation type from grassland to cropland substantially will increase evapotranspiration with implications on the water balance.


Subject(s)
Agriculture , Climate , Plant Transpiration , Kenya , Lakes , Soil/chemistry
3.
Tree Physiol ; 38(7): 1053-1070, 2018 07 01.
Article in English | MEDLINE | ID: mdl-29688549

ABSTRACT

It has been suggested that vigorous secondary tropical forests can have very high transpiration rates, but sap flow and stomatal conductance dynamics of trees and shrubs in these forests are understudied. In an effort to address this knowledge gap, sap flow (thermal dissipation method, 12 trees) and stomatal conductance (porometry, six trees) were measured for young (5-7 years) Psiadia altissima (DC.) Drake trees, a widely occurring species dominating young regrowth following abandonment of swidden agriculture in upland eastern Madagascar. In addition, stomatal conductance (gs) was determined for three individuals of two locally common invasive shrubs (Lantana camara L. and Rubus moluccanus L.) during three periods with contrasting soil moisture conditions. Values of gs for the three investigated species were significantly higher and more sensitive to climatic conditions during the wet period compared with the dry period. Further, gs of the understorey shrubs was much more sensitive to soil moisture content than that of the trees. Tree transpiration rates (Ec) were relatively stable during the dry season and were only affected somewhat by soil water content at the end of the dry season, suggesting the trees had continued access to soil water despite drying out of the topsoil. The Ec exhibited a plateau-shaped relation with vapour pressure deficit (VPD), which was attributed to stomatal closure at high VPD. Vapour pressure deficit was the major driver of variation in Ec, during both the wet and the dry season. Overall water use of the trees was modest, possibly reflecting low site fertility after three swidden cultivation cycles. The observed contrast in gs response to soil water and climatic conditions for the trees and shrubs underscores the need to take root distributions into account when modelling transpiration from regenerating tropical forests.


Subject(s)
Forests , Plant Stomata/physiology , Plant Transpiration , Trees/physiology , Plant Transpiration/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...