Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
2.
Nat Cancer ; 3(4): 471-485, 2022 04.
Article in English | MEDLINE | ID: mdl-35484422

ABSTRACT

Aberrant expression of MYC transcription factor family members predicts poor clinical outcome in many human cancers. Oncogenic MYC profoundly alters metabolism and mediates an antioxidant response to maintain redox balance. Here we show that MYCN induces massive lipid peroxidation on depletion of cysteine, the rate-limiting amino acid for glutathione (GSH) biosynthesis, and sensitizes cells to ferroptosis, an oxidative, non-apoptotic and iron-dependent type of cell death. The high cysteine demand of MYCN-amplified childhood neuroblastoma is met by uptake and transsulfuration. When uptake is limited, cysteine usage for protein synthesis is maintained at the expense of GSH triggering ferroptosis and potentially contributing to spontaneous tumor regression in low-risk neuroblastomas. Pharmacological inhibition of both cystine uptake and transsulfuration combined with GPX4 inactivation resulted in tumor remission in an orthotopic MYCN-amplified neuroblastoma model. These findings provide a proof of concept of combining multiple ferroptosis targets as a promising therapeutic strategy for aggressive MYCN-amplified tumors.


Subject(s)
Ferroptosis , Neuroblastoma , Cell Death , Child , Cysteine/therapeutic use , Ferroptosis/genetics , Glutathione/therapeutic use , Humans , N-Myc Proto-Oncogene Protein/genetics , Neuroblastoma/genetics
3.
FEMS Microbiol Lett ; 366(7)2019 04 01.
Article in English | MEDLINE | ID: mdl-31062025

ABSTRACT

Currently, there is no consensus regarding the mechanism underlying Aspergillus niger citrate biosynthesis and secretion. We hypothesise that depending on the experimental setup, extracellular citrate accumulation can have fundamentally different underlying transcriptomic landscapes. We show that varying the amount and type of supplement of an arginine auxotrophic A. niger strain results in transcriptional down-regulation of citrate metabolising enzymes in the condition in which more citrate is accumulated extracellularly. This contrasts with the transcriptional adaptations when increased citrate production is triggered by iron limitation. By combining gene expression data obtained from these two very distinct experimental setups with hidden Markov models and transporter homology approaches, we were able to compile a shortlist of the most likely citrate transporter candidates. Two candidates (An17g01710 and An09g06720m.01) were heterologously expressed in the yeast Saccharomyces cerevisiae, and one of the resultant mutants showed the ability to secrete citrate. Our findings provide steps in untangling the complex interplay of different mechanisms underlying A. niger citrate accumulation, and we demonstrate how a comparative transcriptomics approach complemented with further bioinformatics analyses can be used to pinpoint a fungal citrate exporter.


Subject(s)
Aspergillus niger/metabolism , Citric Acid/metabolism , Aspergillus niger/genetics , Carrier Proteins/genetics , Carrier Proteins/metabolism , Fungal Proteins/genetics , Fungal Proteins/metabolism , Transcriptome
4.
Front Microbiol ; 8: 1424, 2017.
Article in English | MEDLINE | ID: mdl-28824560

ABSTRACT

Aspergillus niger has an innate ability to secrete various organic acids, including citrate. The conditions required for A. niger citrate overproduction are well described, but the physiological reasons underlying extracellular citrate accumulation are not yet fully understood. One of the less understood culture conditions is the requirement of growth-limiting iron concentrations. While this has been attributed to iron-dependent citrate metabolizing enzymes, this straightforward relationship does not always hold true. Here, we show that an increase in citrate secretion under iron limited conditions is a physiological response consistent with a role of citrate as A. niger iron siderophore. We found that A. niger citrate secretion increases with decreasing amounts of iron added to the culture medium and, in contrast to previous findings, this response is independent of the nitrogen source. Differential transcriptomics analyses of the two A. niger mutants NW305 (gluconate non-producer) and NW186 (gluconate and oxalate non-producer) revealed up-regulation of the citrate biosynthesis gene citA under iron limited conditions compared to iron replete conditions. In addition, we show that A. niger can utilize Fe(III) citrate as iron source. Finally, we discuss our findings in the general context of the pH-dependency of A. niger organic acid production, offering an explanation, besides competition, for why A. niger organic acid production is a sequential process influenced by the external pH of the culture medium.

5.
PeerJ ; 5: e3133, 2017.
Article in English | MEDLINE | ID: mdl-28382234

ABSTRACT

The filamentous fungus Rhizopus delemar naturally accumulates relatively high amounts of fumarate. Although the culture conditions that increase fumarate yields are well established, the network underlying the accumulation of fumarate is not yet fully understood. We set out to increase the knowledge about fumarate accumulation in R. delemar. To this end, we combined a transcriptomics and proteomics approach to identify key metabolic pathways involved in fumarate production in R. delemar, and propose that a substantial part of the fumarate accumulated in R. delemar during nitrogen starvation results from the urea cycle due to amino acid catabolism.

6.
PLoS Genet ; 12(12): e1006468, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27984587

ABSTRACT

The study of plant biomass utilization by fungi is a research field of great interest due to its many implications in ecology, agriculture and biotechnology. Most of the efforts done to increase the understanding of the use of plant cell walls by fungi have been focused on the degradation of cellulose and hemicellulose, and transport and metabolism of their constituent monosaccharides. Pectin is another important constituent of plant cell walls, but has received less attention. In relation to the uptake of pectic building blocks, fungal transporters for the uptake of galacturonic acid recently have been reported in Aspergillus niger and Neurospora crassa. However, not a single L-rhamnose (6-deoxy-L-mannose) transporter has been identified yet in fungi or in other eukaryotic organisms. L-rhamnose is a deoxy-sugar present in plant cell wall pectic polysaccharides (mainly rhamnogalacturonan I and rhamnogalacturonan II), but is also found in diverse plant secondary metabolites (e.g. anthocyanins, flavonoids and triterpenoids), in the green seaweed sulfated polysaccharide ulvan, and in glycan structures from viruses and bacteria. Here, a comparative plasmalemma proteomic analysis was used to identify candidate L-rhamnose transporters in A. niger. Further analysis was focused on protein ID 1119135 (RhtA) (JGI A. niger ATCC 1015 genome database). RhtA was classified as a Family 7 Fucose: H+ Symporter (FHS) within the Major Facilitator Superfamily. Family 7 currently includes exclusively bacterial transporters able to use different sugars. Strong indications for its role in L-rhamnose transport were obtained by functional complementation of the Saccharomyces cerevisiae EBY.VW.4000 strain in growth studies with a range of potential substrates. Biochemical analysis using L-[3H(G)]-rhamnose confirmed that RhtA is a L-rhamnose transporter. The RhtA gene is located in tandem with a hypothetical alpha-L-rhamnosidase gene (rhaB). Transcriptional analysis of rhtA and rhaB confirmed that both genes have a coordinated expression, being strongly and specifically induced by L-rhamnose, and controlled by RhaR, a transcriptional regulator involved in the release and catabolism of the methyl-pentose. RhtA is the first eukaryotic L-rhamnose transporter identified and functionally validated to date.


Subject(s)
Aspergillus niger/genetics , Biological Transport/genetics , Rhamnose/genetics , Aspergillus niger/enzymology , Cell Wall/chemistry , Cell Wall/metabolism , Gene Expression Regulation, Fungal , Genome, Fungal , Hexuronic Acids/chemistry , Hexuronic Acids/metabolism , Pectins/chemistry , Pectins/metabolism , Plants/chemistry , Polysaccharides/chemistry , Polysaccharides/metabolism , Proteomics , Rhamnose/chemistry , Rhamnose/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism
7.
Biotechnol Biofuels ; 9: 148, 2016.
Article in English | MEDLINE | ID: mdl-27446237

ABSTRACT

BACKGROUND: Global climate change and fossil fuels limitations have boosted the demand for robust and efficient microbial factories for the manufacturing of bio-based products from renewable feedstocks. In this regard, efforts have been done to enhance the enzyme-secreting ability of lignocellulose-degrading fungi, aiming to improve protein yields while taking advantage of their ability to use lignocellulosic feedstocks. Access to sugars in complex polysaccharides depends not only on their release by specific hydrolytic enzymes, but also on the presence of transporters capable of effectively transporting the constituent sugars into the cell. This study aims to identify and characterize xylose transporters from Aspergillus niger and Trichoderma reesei, two fungi that have been industrially exploited for decades for the production of lignocellulose-degrading hydrolytic enzymes. RESULTS: A hidden Markov model for the identification of xylose transporters was developed and used to analyze the A. niger and T. reesei in silico proteomes, yielding a list of candidate xylose transporters. From this list, three A. niger (XltA, XltB and XltC) and three T. reesei (Str1, Str2 and Str3) transporters were selected, functionally validated and biochemically characterized through their expression in a Saccharomyces cerevisiae hexose transport null mutant, engineered to be able to metabolize xylose but unable to transport this sugar. All six transporters were able to support growth of the engineered yeast on xylose but varied in affinities and efficiencies in the uptake of the pentose. Amino acid sequence analysis of the selected transporters showed the presence of specific residues and motifs recently associated to xylose transporters. Transcriptional analysis of A. niger and T. reesei showed that XltA and Str1 were specifically induced by xylose and dependent on the XlnR/Xyr1 regulators, signifying a biological role for these transporters in xylose utilization. CONCLUSIONS: This study revealed the existence of a variety of xylose transporters in the cell factories A. niger and T. reesei. The particular substrate specificity and biochemical properties displayed by A. niger XltA and XltB suggested a possible biological role for these transporters in xylose uptake. New insights were also gained into the molecular mechanisms regulating the pentose utilization, at inducer uptake level, in these fungi. Analysis of the A. niger and T. reesei predicted transportome with the newly developed hidden Markov model showed to be an efficient approach for the identification of new xylose transporting proteins.

8.
ACS Synth Biol ; 3(12): 995-8, 2014 Dec 19.
Article in English | MEDLINE | ID: mdl-25524108

ABSTRACT

Aspergillus niger is a filamentous fungus that is extensively used in industrial fermentations for protein expression and the production of organic acids. Inherent biosynthetic capabilities, such as the capacity to secrete these biomolecules in high amounts, make A. niger an attractive production host. Although A. niger is renowned for this ability, the knowledge of the molecular components that underlie its production capacity, intercellular trafficking processes and secretion mechanisms is far from complete. Here, we introduce a standardized set of tools, consisting of an N-terminal GFP-actin fusion and codon optimized eforRed chromoprotein. Expression of the GFP-actin construct facilitates visualization of the actin filaments of the cytoskeleton, whereas expression of the chromoprotein construct results in a clearly distinguishable red phenotype. These experimentally validated constructs constitute the first set of standardized A. niger biomarkers, which can be used to study morphology, intercellular trafficking, and secretion phenomena.


Subject(s)
Aspergillus niger , Cellular Structures/ultrastructure , Organelles/ultrastructure , Actins/chemistry , Actins/metabolism , Aspergillus niger/chemistry , Aspergillus niger/cytology , Aspergillus niger/metabolism , Aspergillus niger/ultrastructure , Biomarkers/chemistry , Biomarkers/metabolism , Green Fluorescent Proteins/chemistry , Green Fluorescent Proteins/metabolism , Single-Cell Analysis
9.
J Biol Eng ; 7(1): 26, 2013 Nov 18.
Article in English | MEDLINE | ID: mdl-24245660

ABSTRACT

BACKGROUND: The use of in silico simulations as a basis for designing artificial biological systems (and experiments to characterize them) is one of the tangible differences between Synthetic Biology and "classical" Genetic Engineering. To this end, synthetic biologists have adopted approaches originating from the traditionally non-biological fields of Nonlinear Dynamics and Systems & Control Theory. However, due to the complex molecular interactions affecting the emergent properties of biological systems, mechanistic descriptions of even the simplest genetic circuits (transcriptional feedback oscillators, bi-stable switches) produced by these methods tend to be either oversimplified, or numerically intractable. More comprehensive and realistic models can be approximated by constructing "toy" genetic circuits that provide the experimenter with some degree of control over the transcriptional dynamics, and allow for experimental set-ups that generate reliable data reflecting the intracellular biochemical state in real time. To this end, we designed two genetic circuits (basic and tunable) capable of exhibiting synchronized oscillatory green fluorescent protein (GFP) expression in small populations of Escherichia coli cells. The functionality of the basic circuit was verified microscopically. High-level visualizations of computational simulations were analyzed to determine whether the reliability and utility of a synchronized transcriptional oscillator could be enhanced by the introduction of chemically inducible repressors. RESULTS: Synchronized oscillations in GFP expression were repeatedly observed in chemically linked sub-populations of cells. Computational simulations predicted that the introduction of independently inducible repressors substantially broaden the range of conditions under which oscillations could occur, in addition to allowing the frequency of the oscillation to be tuned. CONCLUSIONS: The genetic circuits described here may prove to be valuable research tools for the study of synchronized transcriptional feedback loops under a variety of conditions and experimental set-ups. We further demonstrate the benefit of using abstract visualizations to discover subtle non-linear trends in complex dynamic models with large parameter spaces.

10.
J Biol Eng ; 6(1): 14, 2012 Sep 04.
Article in English | MEDLINE | ID: mdl-22947262

ABSTRACT

Synthetic biology is an emerging field that combines molecular biology with engineering principles, which requires abstraction levels applied to a modular biological componentry. The Registry of Standard Biological Parts harbours such a repository of standardized parts, and thereby facilitates the combination of complex molecular modules to novel genetic circuits and devices. However, since finding the best parts for a pre-determined genetic design can be time consuming, we devised the Constructor, a web tool that recommends the smallest number of cloning steps for pre-designed circuits, and implements user-defined quality checks.We present the Constructor ( http://www.systemsbiology.nl/the_constructor) as a constructive web tool that simplifies the in silico assembly of pre-designed gene circuitries from standard parts, reducing both planning and subsequent cloning time.

11.
PLoS One ; 7(5): e36982, 2012.
Article in English | MEDLINE | ID: mdl-22606321

ABSTRACT

Novel microbial cultivation platforms are of increasing interest to researchers in academia and industry. The development of materials with specialized chemical and geometric properties has opened up new possibilities in the study of previously unculturable microorganisms and has facilitated the design of elegant, high-throughput experimental set-ups. Within the context of the international Genetically Engineered Machine (iGEM) competition, we set out to design, manufacture, and implement a flow device that can accommodate multiple growth platforms, that is, a silicon nitride based microsieve and a porous aluminium oxide based microdish. It provides control over (co-)culturing conditions similar to a chemostat, while allowing organisms to be observed microscopically. The device was designed to be affordable, reusable, and above all, versatile. To test its functionality and general utility, we performed multiple experiments with Escherichia coli cells harboring synthetic gene circuits and were able to quantitatively study emerging expression dynamics in real-time via fluorescence microscopy. Furthermore, we demonstrated that the device provides a unique environment for the cultivation of nematodes, suggesting that the device could also prove useful in microscopy studies of multicellular microorganisms.


Subject(s)
Microbiological Techniques/instrumentation , Microfluidic Analytical Techniques/instrumentation , Coculture Techniques/instrumentation , Equipment Design , Escherichia coli/genetics , Escherichia coli/metabolism , Genetic Engineering , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , High-Throughput Screening Assays/instrumentation , Microscopy, Fluorescence , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...