Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Adv Genet ; 111: 237-310, 2024.
Article in English | MEDLINE | ID: mdl-38908901

ABSTRACT

Microorganisms have been used in nutrition and medicine for thousands of years worldwide, long before humanity knew of their existence. It is now known that the gut microbiota plays a key role in regulating inflammatory, metabolic, immune and neurobiological processes. This text discusses the importance of microbiota-based precision nutrition in gut permeability, as well as the main advances and current limitations of traditional probiotics, new-generation probiotics, psychobiotic probiotics with an effect on emotional health, probiotic foods, prebiotics, and postbiotics such as short-chain fatty acids, neurotransmitters and vitamins. The aim is to provide a theoretical context built on current scientific evidence for the practical application of microbiota-based precision nutrition in specific health fields and in improving health, quality of life and physiological performance.


Subject(s)
Gastrointestinal Microbiome , Prebiotics , Probiotics , Humans , Probiotics/administration & dosage , Prebiotics/administration & dosage , Precision Medicine/methods
2.
Adv Genet ; 111: 149-198, 2024.
Article in English | MEDLINE | ID: mdl-38908899

ABSTRACT

This chapter analyses the interaction between microbiota and humans from an evolutionary point of view. Long-term interactions between gut microbiota and host have been generated as a result of dietary choices through coevolutionary processes, where mutuality of advantage is essential. Likewise, the characteristics of the intestinal environment have made it possible to describe different intrahost evolutionary mechanisms affecting microbiota. For its part, the intestinal microbiota has been of great importance in the evolution of mammals, allowing the diversification of dietary niches, phenotypic plasticity and the selection of host phenotypes. Although the origin of the human intestinal microbial community is still not known with certainty, mother-offspring transmission plays a key role, and it seems that transmissibility between individuals in adulthood also has important implications. Finally, it should be noted that certain aspects inherent to modern lifestyle, including refined diets, antibiotic intake, exposure to air pollutants, microplastics, and stress, could negatively affect the diversity and composition of our gut microbiota. This chapter aims to combine current knowledge to provide a comprehensive view of the interaction between microbiota and humans throughout evolution.


Subject(s)
Biological Evolution , Gastrointestinal Microbiome , Life Style , Humans , Animals , Microbiota , Diet
3.
Adv Genet ; 111: 1-79, 2024.
Article in English | MEDLINE | ID: mdl-38908897

ABSTRACT

This chapter overviews genetic techniques' fundamentals and methodological features, including different approaches, analyses, and applications that have contributed to advancing health and disease. The aim is to describe laboratory methodologies and analyses employed to understand the genetic landscape of different biological contexts, from conventional techniques to cutting-edge technologies. Besides describing detailed aspects of the polymerase chain reaction (PCR) and derived types as one of the principles for many novel techniques, we also discuss microarray analysis, next-generation sequencing, and genome editing technologies such as transcription activator-like effector nucleases (TALENs) and the clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated (Cas) systems. These techniques study several phenotypes, ranging from autoimmune disorders to viral diseases. The significance of integrating diverse genetic methodologies and tools to understand host genetics comprehensively and addressing the ethical, legal, and social implications (ELSI) associated with using genetic information is highlighted. Overall, the methods, procedures, and applications in host genetic analysis provided in this chapter furnish researchers and practitioners with a roadmap for navigating the dynamic landscape of host-genome interactions.


Subject(s)
CRISPR-Cas Systems , Humans , CRISPR-Cas Systems/genetics , Gene Editing/methods , High-Throughput Nucleotide Sequencing
4.
Adv Genet ; 111: 81-115, 2024.
Article in English | MEDLINE | ID: mdl-38908906

ABSTRACT

Microbiota is a complex community of microorganisms living in a defined environment. Until the 20th century, knowledge of microbiota was partial, as the techniques available for their characterization were primarily based on bacteriological culture. In the last twenty years, the development of DNA sequencing technologies, multi-omics, and bioinformatics has expanded our understanding of microorganisms. We have moved from mainly considering them isolated disease-causing agents to recognizing the microbiota as an essential component of host biology. These techniques have shown that the microbiome plays essential roles in various host phenotypes, influencing development, physiology, reproduction, and evolution. This chapter provides researchers with a summary of the primary concepts, sample collection, experimental techniques, and bioinformatics analysis commonly used in microbiome research. The main features, applications in microbiome studies, and their advantages and limitations are included in each section.


Subject(s)
Computational Biology , Microbiota , Humans , Computational Biology/methods , Metagenomics/methods , Animals , Sequence Analysis, DNA/methods , Bacteria/genetics , Bacteria/classification , High-Throughput Nucleotide Sequencing
5.
Adv Genet ; 111: 409-450, 2024.
Article in English | MEDLINE | ID: mdl-38908903

ABSTRACT

Regular physical activity promotes health benefits and contributes to develop the individual biological potential. Chronical physical activity performed at moderate and high-intensity is the intensity more favorable to produce health development in athletes and improve the gut microbiota balance. The athletic microbiome is characterized by increased microbial diversity and abundance as well as greater phenotypic versatility. In addition, physical activity and microbiota composition have bidirectional effects, with regular physical activity improving microbial composition and microbial composition enhancing physical performance. The improvement of physical performance by a healthy microbiota is related to different phenotypes: i) efficient metabolic development, ii) improved regulation of intestinal permeability, iii) favourable modulation of local and systemic inflammatory and efficient immune responses, iv) efective regulation of systemic pH and, v) protection against acute stressful events such as environmental exposure to altitude or heat. The type of sport, both intensity or volume characteristics promote microbiota specialisation. Individual assessment of the state of the gut microbiota can be an effective biomarker for monitoring health in the medium to long term. The relationship between the microbiota and the rest of the body is bidirectional and symbiotic, with a full connection between the systemic functions of the nervous, musculoskeletal, endocrine, metabolic, acid-base and immune systems. In addition, circadian rhythms, including regular physical activity, directly influence the adaptive response of the microbiota. In conclusion, regular stimuli of moderate- and high-intensity physical activity promote greater diversity, abundance, resilience and versatility of the gut microbiota. This effect is highly beneficial for human health when healthy lifestyle habits including nutrition, hydration, rest, chronoregulation and physical activity.


Subject(s)
Exercise , Gastrointestinal Microbiome , Humans , Exercise/physiology , Microbiota , Circadian Rhythm/physiology
6.
Adv Genet ; 111: 451-495, 2024.
Article in English | MEDLINE | ID: mdl-38908904

ABSTRACT

This chapter aims to explore the usefulness of the latest advances in genetic studies in the field of the circadian system in the future development of individualised strategies for health improvement based on lifestyle intervention. Due to the multifactorial and complex nature of the circadian system, we focus on the highly prevalent phenotypes in the population that are key to understanding its biology from an evolutionary perspective and that can be modulated by lifestyle. Therefore, we leave in the background those phenotypes that constitute infrequent pathologies or in which the current level of scientific evidence does not favour the implementation of practical approaches of this type. Therefore, from an evolutionary paradigm, this chapter addresses phenotypes such as morning chronotypes, evening chronotypes, extreme chronotypes, and other key concepts such as circadian rhythm amplitude, resilience to changes in circadian rhythm, and their relationships with pathologies associated with circadian rhythm imbalances.


Subject(s)
Circadian Rhythm , Circadian Rhythm/genetics , Circadian Rhythm/physiology , Humans , Phenotype , Life Style , Animals
7.
Adv Genet ; 111: 497-535, 2024.
Article in English | MEDLINE | ID: mdl-38908905

ABSTRACT

Due to the multifactorial and complex nature of rest, we focus on phenotypes related to sleep. Sleep regulation is a multifactorial process. In this chapter, we focus on those phenotypes inherent to sleep that are highly prevalent in the population, and that can be modulated by lifestyle, such as sleep quality and duration, insomnia, restless leg syndrome and daytime sleepiness. We, therefore, leave in the background those phenotypes that constitute infrequent pathologies or for which the current level of scientific evidence does not favour the implementation of practical approaches of this type. Similarly, the regulation of sleep quality is intimately linked to the regulation of the circadian rhythm. Although this relationship is discussed in the sections that require it, the in-depth study of circadian rhythm regulation at the molecular level deserves a separate chapter, and this is how it is dealt with in this volume.


Subject(s)
Circadian Rhythm , Sleep Initiation and Maintenance Disorders , Sleep , Humans , Sleep/genetics , Sleep/physiology , Circadian Rhythm/genetics , Circadian Rhythm/physiology , Sleep Initiation and Maintenance Disorders/genetics , Restless Legs Syndrome/genetics , Phenotype , Animals , Sleep Quality
8.
Adv Genet ; 111: 199-235, 2024.
Article in English | MEDLINE | ID: mdl-38908900

ABSTRACT

Optimal nutrition is essential for health and physiological performance. Nutrition-related diseases such as obesity and diabetes are major causes of death and reduced quality of life in modern Western societies. Thanks to combining nutrigenetics and nutrigenomics, genomic nutrition allows the study of the interaction between nutrition, genetics and physiology. Currently, interrelated multi-genetic and multifactorial phenotypes are studied from a multiethnic and multi-omics approach, step by step identifying the important role of pathways, in addition to those directly related to metabolism. It allows the progressive identification of genetic profiles associated with specific susceptibilities to diet-related phenotypes, which may facilitate individualised dietary recommendations to improve health and quality of life.


Subject(s)
Nutrigenomics , Humans , Diet , Genetic Predisposition to Disease/genetics , Nutrigenomics/methods , Nutritional Status/genetics , Obesity/genetics , Phenotype
9.
Nutr Rev ; 2024 May 10.
Article in English | MEDLINE | ID: mdl-38728013

ABSTRACT

Colorectal cancer (CRC) is the second most deadly and the third most diagnosed cancer in both sexes worldwide. CRC pathogenesis is associated with risk factors such as genetics, alcohol, smoking, sedentariness, obesity, unbalanced diets, and gut microbiota dysbiosis. The gut microbiota is the microbial community living in symbiosis in the intestine, in a dynamic balance vital for health. Increasing evidence underscores the influence of specific gut microbiota bacterial species on CRC incidence and pathogenesis. In this regard, conjugated linoleic acid (CLA) metabolites produced by certain gut microbiota have demonstrated an anticarcinogenic effect in CRC, influencing pathways for inflammation, proliferation, and apoptosis. CLA production occurs naturally in the rumen, and human bioavailability is through the consumption of food derived from ruminants. In recent years, biotechnological attempts to increase CLA bioavailability in humans have been unfruitful. Therefore, the conversion of essential dietary linoleic acid to CLA metabolite by specific intestinal bacteria has become a promising process. This article reviews the evidence regarding CLA and CLA-producing bacteria as therapeutic agents against CRC and investigates the best strategy for increasing the yield and bioavailability of CLA. Given the potential and limitations of the present strategies, a new microbiome-based precision nutrition approach based on endogenous CLA production by human gut bacteria is proposed. A literature search in the PubMed and PubMed Central databases identified 794 papers on human gut bacteria associated with CLA production. Of these, 51 studies exploring association consistency were selected. After excluding 19 papers, due to health concerns or discrepancies between studies, 32 papers were selected for analysis, encompassing data for 38 CLA-producing bacteria, such as Bifidobacterium and Lactobacillus species. The information was analyzed by a bioinformatics food recommendation system patented by our research group, Phymofood (EP22382095). This paper presents a new microbiome-based precision nutrition approach targeting CLA-producing gut bacterial species to maximize the anticarcinogenic effect of CLA in CRC.

10.
AIMS Public Health ; 10(3): 710-738, 2023.
Article in English | MEDLINE | ID: mdl-37842270

ABSTRACT

This article aims to examine the evidence on the relationship between gut microbiota (GM), leaky gut syndrome and musculoskeletal injuries. Musculoskeletal injuries can significantly impair athletic performance, overall health, and quality of life. Emerging evidence suggests that the state of the gut microbiota and the functional intestinal permeability may contribute to injury recovery. Since 2007, a growing field of research has supported the idea that GM exerts an essential role maintaining intestinal homeostasis and organic and systemic health. Leaky gut syndrome is an acquired condition where the intestinal permeability is impaired, and different bacteria and/or toxins enter in the bloodstream, thereby promoting systemic endotoxemia and chronic low-grade inflammation. This systemic condition could indirectly contribute to increased local musculoskeletal inflammation and chronificate injuries and pain, thereby reducing recovery-time and limiting sport performance. Different strategies, including a healthy diet and the intake of pre/probiotics, may contribute to improving and/or restoring gut health, thereby modulating both systemically as local inflammation and pain. Here, we sought to identify critical factors and potential strategies that could positively improve gut microbiota and intestinal health, and reduce the risk of musculoskeletal injuries and its recovery-time and pain. In conclusion, recent evidences indicate that improving gut health has indirect consequences on the musculoskeletal tissue homeostasis and recovery through the direct modulation of systemic inflammation, the immune response and the nociceptive pain.

11.
Biology (Basel) ; 11(8)2022 Aug 16.
Article in English | MEDLINE | ID: mdl-36009850

ABSTRACT

Overspeed is a training method used to improve running speed, although its effects are not supported by consensual scientific evidence. The overspeed stimulus can be boosted by several methods, including motorized towing devices. Our objectives were to analyze the acute effects of three overspeed loads in young athletes and to select optimal loads for training periods. Eight young athletes (16.73 ± 1.69 years) performed one unassisted sprint and three assisted sprints, and kinematic and biomechanical data were compared. Significant increases (p < 0.05) in step velocity and step length were found with 2, 4, and 5.25 kg in maximum running speed, flight time and horizontal distance from the first contact to the vertical projection of the center of mass with 4 and 5.25 kg. Significant time decreases were found in 5 m flying sprint and contact time with 4 and 5.25 kg, and no significant changes were observed in step rate. The individually recommended loads would be between 3.47 ± 0.68% and 6.94 ± 1.35% body weight. Even having limitations, we can understand this work and its results as a pilot study to replicate the methodology and the use of new devices to more broadly investigate the effects of overspeed.

12.
J Sports Sci ; 40(6): 704-716, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34991419

ABSTRACT

Overspeed-based training is widely used to improve athletes' maximum running speed and towing systems are one of the most frequently employed methods for this purpose. However, the effectiveness of this modality has not been thoroughly determined. This review analyzes the acute effects of overspeed conditions with towing systems in sprinters. The articles were searched, analysed and selected following the PRISMA methodology in the PubMed, SPORTDiscus and Google Scholar databases. Sixteen studies were included, with a total sample of 240 men and 56 women (14 to 31y; 1.73 to 1.82 m; 66.2 to 77.0 kg). The main acute responses found were: 1) an increase in maximum running speed (ES = 1.54, large), stride length (ES = 0.92, moderate), flight time (ES = 0.28, small) and stride rate (ES = 0.12, trivial); and, 2) a decrease in contact time (ES = 0.57, small). However, analysis of the reported ground reaction forces and electromyography data did not provide enough consistent evidence to conclusively determine whether the changes are due to a greater muscular response of the athlete or the effect of the towing system. Future research should focus on studying the mechanisms responsible for the observed acute effects.


Subject(s)
Athletic Performance , Running , Athletes , Athletic Performance/physiology , Electromyography , Female , Humans , Male , Running/physiology
13.
J Strength Cond Res ; 34(11): 3031-3036, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33105351

ABSTRACT

Díaz, J, Álvarez Herms, J, Castañeda, A, Larruskain, J, Ramírez de la Piscina, X, Borisov, OV, Semenova, EA, Kostryukova, ES, Kulemin, NA, Andryushchenko, ON, Larin, AK, Andryushchenko, LB, Generozov, EV, Ahmetov, II, and Odriozola, A. The GALNTL6 gene rs558129 polymorphism is associated with power performance. J Strength Cond Res 34(11): 3031-3036, 2020-The largest genome-wide association study to date in sports genomics showed that endurance athletes were 1.23 times more likely to possess the C allele of the single nucleotide polymorphism rs558129 of N-acetylgalactosaminyltransferase-like 6 gene (GALNTL6), compared with controls. Nevertheless, no further study has investigated GALNTL6 gene in relation to physical performance. Considering that previous research has shown that the same polymorphism can be associated with both endurance and power phenotypes (ACTN3, ACE, and PPARA), we investigated the association between GALNTL6 rs558129 polymorphism and power performance. According to this objective we conducted 2 global studies regarding 2 different communities of athletes in Spain and Russia. The first study involved 85 Caucasian physically active men from the north of Spain to perform a Wingate anaerobic test (WAnT). In the second study we compared allelic frequencies between 173 Russian power athletes (49 strength and 124 speed-strength athletes), 169 endurance athletes, and 201 controls. We found that physically active men with the T allele of GALNTL6 rs558129 had 5.03-6.97% higher power values compared with those with the CC genotype (p < 0.05). Consistent with these findings, we have shown that the T allele was over-represented in power athletes (37.0%) compared with endurance athletes (29.3%; OR = 1.4, p = 0.032) and controls (28.6%; OR = 1.5, p = 0.015). Furthermore, the highest frequency of the T allele was observed in strength athletes (43.9%; odds ratio [OR] = 1.9, p = 0.0067 compared with endurance athletes; OR = 2.0, p = 0.0036 compared with controls). In conclusion, our data suggest that the GALNTL6 rs558129 T allele can be favorable for anaerobic performance and strength athletes. In addition, we propose a new possible functional role of GALNTL6 rs558129, gut microbiome regarding short-chain fatty acid regulation and their anti-inflammatory and resynthesis functions. Nevertheless, further studies are required to understand the mechanisms involved.


Subject(s)
Athletes , Athletic Performance/physiology , Muscle Strength/genetics , Physical Endurance/genetics , Sports/physiology , Adult , Alleles , Female , Gene Frequency , Genome-Wide Association Study , Genotype , Humans , Male , N-Acetylgalactosaminyltransferases/genetics , Phenotype , Polymorphism, Single Nucleotide , Russia , Spain , White People/genetics , Polypeptide N-acetylgalactosaminyltransferase
14.
Med Sci Sports Exerc ; 50(2): 361-368, 2018 02.
Article in English | MEDLINE | ID: mdl-28976491

ABSTRACT

PURPOSE: This study aimed to investigate the association of candidate single nucleotide polymorphisms (SNP) with noncontact hamstring muscle injuries in elite soccer players and to create and validate a model to assess the risk of hamstring injury. METHODS: A total of 107 elite male outfield players were prospectively followed for six seasons. Players were genotyped for 37 SNP previously investigated in relation to musculoskeletal injuries. The association of SNP, previous injury, age, level of play, position, and anthropometric data with 129 hamstring injuries (413 observations) was investigated in the discovery phase (2010-2015), and a multivariable Cox frailty model was created using forward selection. The model's discriminative ability was tested in the validation phase (2015-2016, 31 injuries, 98 observations) using Harrell's C index. RESULTS: Five SNP were found to be significantly associated with hamstring injury in a multivariable model: matrix metalloproteinase 3 rs679620 (A vs G, hazard ratio [HR] = 2.06, 95% confidence interval [CI] = 1.51-2.81), tenascin C rs2104772 (A vs T, HR = 1.65, 95% CI = 1.17-2.32), interleukin 6 rs1800795 (GG vs GC + CC, HR = 1.68, 95% CI = 1.11-2.53), nitric oxide synthase 3 rs1799983 (G vs T, HR = 1.35, 95% CI = 1.01-1.79), and hypoxia-inducible factor-1α rs11549465 (CC vs CT, HR = 2.08, 95% CI = 1.00-4.29). Age also entered the model (≥24 vs <24 yr, HR = 2.10, 95% CI = 1.29-3.42). The model showed acceptable discrimination in the discovery phase (C index = 0.74), but not in the validation phase (C index = 0.52). CONCLUSION: Genetic variants appear to be involved in the etiology of hamstring injuries but were not found to have predictive value by themselves. Further research, increasing the number of genetic variants and including environmental factors in complex multifactorial risk models, is necessary.


Subject(s)
Athletic Injuries/genetics , Hamstring Muscles/injuries , Leg Injuries/genetics , Polymorphism, Single Nucleotide , Soccer/injuries , Adolescent , Genotype , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Interleukin-6/genetics , Male , Matrix Metalloproteinase 3/genetics , Nitric Oxide Synthase Type III/genetics , Tenascin/genetics , Young Adult
15.
Forensic Sci Int Genet ; 8(1): 10-9, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24315583

ABSTRACT

I-DNASE21 is a new STR multiplex system that amplifies 21 STR autosomal loci, plus the amelogenin locus in one reaction. This system has been designed to analyze all the STR loci included in the Combined DNA Index System (CODIS), Interpol Standard Set of Loci (ISSL), Extended European Standard Set (ESS-Extended), UK National Criminal Intelligence DNA Database (NDNAD) and German Core loci (GCL). This manuscript presents the validation of the I-DNASE21 system according to the revised guidelines issued by the Scientific Working Group on DNA Analysis Methods (SWGDAM). The results of this validation, added to the extremely high discriminatory power showed, suggest that I-DNASE21 could be a potentially helpful tool for identification and kinship determination even in complex paternity cases.


Subject(s)
Deoxyribonucleases/genetics , Microsatellite Repeats , Animals , Databases, Genetic , Heterozygote , Humans , Polymerase Chain Reaction , Reproducibility of Results , Species Specificity
16.
Int J Legal Med ; 127(4): 735-9, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23188413

ABSTRACT

We report the development of an effective system for analyzing X chromosome-linked mini short tandem repeat loci with reduced-size amplicons (less than 220 bp), useful for analyzing highly degraded DNA samples. To generate smaller amplicons, we redesigned primers for eight X-linked microsatellites (DXS7132, DXS10079, DXS10074, DXS10075, DXS6801, DXS6809, DXS6789, and DXS6799) and established efficient conditions for a multiplex PCR system (miniX). The validation tests confirmed that it has good sensitivity, requiring as little as 20 pg of DNA, and performs well with DNA from paraffin-embedded tissues, thus showing potential for improved analysis and identification of highly degraded and/or very limited DNA samples. Consequently, this system may help to solve complex forensic cases, particularly when autosomal markers convey insufficient information.


Subject(s)
Chromosomes, Human, X , DNA Degradation, Necrotic , DNA Fingerprinting/methods , Microsatellite Repeats , Multiplex Polymerase Chain Reaction , DNA/analysis , DNA Primers , Female , Genetic Markers , Haplotypes , Heterozygote , Humans , Male , Spain
17.
Int J Legal Med ; 127(3): 573-8, 2013 May.
Article in English | MEDLINE | ID: mdl-23254460

ABSTRACT

We hypothesized that miRNAs present in vitreous humor could be a sort of "biological black box," storing information about physiological and environmental circumstances at death. As a proof of concept, we analyzed the vitreous humor miRNA signature to explore its forensic potential applications, such as determining the time of the day at death. The miRNAs present in vitreous humor from individuals who died at daytime or at nighttime were analyzed by quantitative real-time polymerase chain reaction (qPCR) array. Target miRNAs showing significant differences between groups were studied in a larger sample by individual qPCR assays. After array analysis of miRNAs in seven samples, significant expression differences were detected between individuals who died at daytime and at nighttime regarding mir-34c, mir-541, mir-888, mir-484, and mir-142-5p. miR-222 appeared as the best reference gene. The results were replicated in 34 vitreous humor samples, and the day-night differences were confirmed for miR-142-5p and miR-541, suggesting that miRNA levels may be related to either the ambient light or the circadian clock at the time of death. There was no correlation between miRNA levels and the time elapsed after death, suggesting that they were stable at least for 24 h. In conclusion, this report supports the potential forensic utility of the analysis of miRNAs in the vitreous humor in applications such as determining the time of death.


Subject(s)
Autopsy/methods , Circadian Rhythm/genetics , Forensic Genetics/methods , MicroRNAs/analysis , Vitreous Body/chemistry , Female , Gene Expression Profiling , Humans , Linear Models , Male , Middle Aged , Pilot Projects , Real-Time Polymerase Chain Reaction , Sensitivity and Specificity , Time Factors
18.
Clin Chim Acta ; 414: 85-90, 2012 Dec 24.
Article in English | MEDLINE | ID: mdl-22967948

ABSTRACT

INTRODUCTION: During routine analysis of chimerism in bone marrow transplant patients pre-transplant genotype of the recipient or the donor might lack. We aimed to develop a new method to analyze DNA results suitable when reference genotypes are not available. METHODS: The method was based on the balance between heterozygotes. It was implemented in a standard computer spreadsheet, and considered the hypothetical donor-recipient genotype combinations. Hypotheses with peak height ratios and allele sharing tendency above a critical threshold were accepted. The results were compared with those obtained with prior knowledge of reference genotypes. RESULTS: The algorithm predicted correctly the proportion of donor/recipient chimerism, even in the absence of reference genotypes. In fact, the predicted values were closely correlated (r(2)>0.98) and free of systematic bias (slope 0.98-1.04), in comparison with the reference values obtained with prior knowledge of the donor and recipient genetic profiles. CONCLUSIONS: This study constitutes a proof-of-concept of the application of the heterozygote balance for the quantitative study of chimerism. The algorithm computes post-transplant chimerism in an easy and time-efficient way, even when the donor and recipient reference genotypes are unavailable. Therefore, it can be a useful tool for laboratories involved in chimerism analysis.


Subject(s)
Autoanalysis , Computational Biology , DNA/genetics , Transplantation Chimera/genetics , Algorithms , Alleles , Bone Marrow Transplantation , Genotype , Humans , Reproducibility of Results , Sensitivity and Specificity
19.
Forensic Sci Int Genet ; 6(4): e106-8, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22277258

ABSTRACT

Mitochondrial control region (16024-576) sequences were generated from 106 samples from autochthonous Basques from the Autonomous Community of the Basque Country. It is especially important to generate mtDNA databases from isolated populations in order to maximize the power of discrimination of this molecular marker. It also represents a useful approach to carry out a more accurate haplogroup classification. This is the first database report of complete control region sequences in an autochthonous Basque population sample. Strict selection criteria of autochthonous individuals, automation of laboratory processing and independent reviews of the raw electropherograms ensure the high quality of these sequences and their utility as reference population data of the autochthonous Basque population.


Subject(s)
DNA, Mitochondrial/genetics , Ethnicity/genetics , Genetic Variation , DNA Fingerprinting , Genetics, Population , Haplotypes , Humans , Polymerase Chain Reaction , Sequence Analysis, DNA , Spain
20.
Int J Legal Med ; 126(1): 167-72, 2012 Jan.
Article in English | MEDLINE | ID: mdl-21656297

ABSTRACT

The I-DNADuo multiplex system combination is composed of previously validated I-DNA1 and a new short tandem repeat (STR) multiplex named I-DNA2 that analyses 11 STR loci plus amelogenin. I-DNADuo, with amplicon sizes ranging from 57 to 298 bp, is specifically designed to analyse amelogenin and 15 STR loci (ten of them plus amelogenin in duplicate), including all the STR loci of the CODIS, ISSL and ECL databases, and seven of the eight in GCL. The validation of I-DNADuo shows that it is a highly sensitive, robust multiplex system for obtaining individual genetic profiles and for detecting and preventing allelic dropouts.


Subject(s)
DNA Fingerprinting , Forensic Genetics , Genetic Loci , Microsatellite Repeats/genetics , Amelogenin/genetics , Databases, Genetic , Humans , Multiplex Polymerase Chain Reaction , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...