Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
FEMS Microbiol Ecol ; 97(5)2021 04 13.
Article in English | MEDLINE | ID: mdl-33784379

ABSTRACT

In aquatic systems, an interplay between bottom-up and top-down processes determines the dynamic of picocyanobacteria (Pcy) abundance and community structure. Here, we analyzed a 10-year time series (sampled fortnightly) from a hypereutrophic turbid shallow lake located within the Pampa Region of South America, generating the first long-term record of freshwater Pcy from the Southern Hemisphere. We used a cytometric approach to study Pcy community, and focused on its relations with nutrient and light conditions (bottom-up) and potential grazers (top-down). A novel Pcy abundance seasonality with winter maximums was observed for years with relatively stable hydrological levels, related with decreased abundance of seasonal rotifers during colder seasons. Pcy showed lower abundance and higher cytometric alpha diversity during summer, probably due to a strong predation exerted by rotifers. In turn, a direct effect of the non-seasonal small cladocerans Bosmina spp. decreased Pcy abundance and induced a shift from single-cell Pcy into aggregated forms. This structuring effect of Bosmina spp. was further confirmed by Pcy cytometric (dis)similarity analyses from the time series and in situ experimental data. Remarkably, Pcy showed acclimatization to underwater light variations, resembling the relevance of light in this turbid system.


Subject(s)
Rotifera , Zooplankton , Animals , Lakes , Seasons , South America
2.
FEMS Microbiol Ecol ; 96(10)2020 10 02.
Article in English | MEDLINE | ID: mdl-32866263

ABSTRACT

Picocyanobacteria (cells <2 µm) can be found either as single-cells (Pcy) or embedded in a mucilaginous sheath as microcolonies or colonies (CPcy). It has been demonstrated that phenotypic plasticity in picocyanobacteria (i.e. the capability of single-cells to aggregate into colonies) can be induced as a response to grazing pressure. The effect of the presence of different predators (cladocerans and rotifers) on the morphological composition of picocyanobacteria was studied in a natural community, and it was observed that the abundance of CPcy significantly increased in all treatments with zooplankton compared with the control without zooplankton. The aggregation capability was also evaluated in a single-cell strain by adding a conditioned medium of flagellates, rotifers and cladocerans. The proportion of cells forming colonies was significantly higher in all treatments with conditioned medium regardless of the predator. These results suggest that the aggregation of Pcy can be induced as a response to the predation pressure exerted by protists and different zooplankters, and also that Pcy has the capability to aggregate into CPcy even without direct contact with any predator, most probably due to the presence of an infochemical dissolved in the water that does not come from disrupted Pcy cells.


Subject(s)
Predatory Behavior , Rotifera , Animals , Zooplankton
3.
Glob Chang Biol ; 24(11): 5137-5148, 2018 11.
Article in English | MEDLINE | ID: mdl-30112780

ABSTRACT

The relationship between the timing of recurrent biological events and seasonal climatic patterns (i.e., phenology) is a crucial ecological process. Changes in phenology are increasingly linked to global climate change. However, current evidence of phenological responses to recent climate change is subjected to substantial regional and seasonal biases. Most available evidence on climate-driven phenological changes comes from Northern Hemisphere (NH) ecosystems and typically involves increases in spring and summer temperatures, which translate into earlier onsets of spring population developments. In the Argentine Pampa region, warming has occurred at a much slower pace than in the NH, and trends are mostly restricted to increases in the minimum temperatures. We used zooplankton abundance data from Lake Chascomús (recorded every two weeks from 2005 to 2015) to evaluate potential changes in phenology. We adopted a sequential screening approach to identify taxa displaying phenological trends and evaluated whether such trends could be associated to observe long-term changes in water temperature. Two zooplankton species displayed significant later shifts in phenology metrics (end date of Brachionus havanaensis seasonal distribution: 31 day/decade, onset and end dates of Keratella americana seasonal distribution: 59 day/decade and 82 day/decade, respectively). The timing of the observed shift in B. havanaensis phenology was coincident with a warming trend in the May lake water temperature (4.7°C per decade). Analysis of abundance versus temperature patterns from six additional shallow Pampean lakes, and evaluation of previous experimental results, provided further evidence that the lake water warming trend in May was responsible for the delayed decline of B. havanaensis populations in autumn. This study is the first report of freshwater zooplankton phenology changes in the Southern Hemisphere (SH).


Subject(s)
Climate Change , Lakes/microbiology , Zooplankton , Animals , Argentina , Ecosystem , Seasons , Species Specificity , Temperature , Zooplankton/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...