Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Ultramicroscopy ; 249: 113720, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37004492

ABSTRACT

Ptychography is a lensless imaging technique that is aberration-free and capable of imaging both the amplitude and the phase of radiation reflected or transmitted from an object using iterative algorithms. Working with extreme ultraviolet (EUV) light, ptychography can provide better resolution than conventional optical microscopy and deeper penetration than scanning electron microscope. As a compact lab-scale EUV light sources, high harmonic generation meets the high coherence requirement of ptychography and gives more flexibilities in both budget and experimental time compared to synchrotrons. The ability to measure phase makes reflection-mode ptychography a good choice for characterising both the surface topography and the internal structural changes in EUV multilayer mirrors. This paper describes the use of reflection-mode ptychography with a lab-scale high harmonic generation based EUV light source to perform quantitative measurement of the amplitude and phase reflection from EUV multilayer mirrors with engineered substrate defects. Using EUV light at 29.6nm from a tabletop high harmonic generation light source, a lateral resolution down to ∼88nm and a phase resolution of 0.08rad (equivalent to topographic height variation of 0.27nm) are achieved. The effect of surface distortion and roughness on EUV reflectivity is compared to topographic properties of the mirror defects measured using both atomic force microscopy and scanning transmission electron microscopy. Modelling of reflection properties from multilayer mirrors is used to predict the potential of a combination of on-resonance, actinic ptychographic imaging at 13.5nm and atomic force microscopy for characterising the changes in multilayered structures.

2.
Nanoscale ; 14(40): 15165-15180, 2022 Oct 21.
Article in English | MEDLINE | ID: mdl-36214128

ABSTRACT

Many European sculptures and altarpieces from the Middle Ages were decorated with Zwischgold, a bilayer metal leaf with an ultra-thin gold face backed by silver. Zwischgold corrodes quickly when exposed to air, causing the surface of the artefact to darken and lose gloss. The conservation of such Zwischgold applied artefacts has been an obstinate problem. We have acquired quantitative, 3D nanoscale images of Zwischgold samples from 15th century artefacts and modern materials using ptychographic X-ray computed tomography (PXCT), a recently developed coherent diffractive imaging technique, to investigate the leaf structure and chemical state of Zwischgold. The measurements clearly demonstrate decreasing density (increasing porosity) of the leaf materials and their corrosion products, as well as delamination of the leaves from their substrate. Each of these effects speak to typically observed issues in the conservation of such Zwischgold applied artefacts. Further, a rare variant of Zwischgold that contains extremely thin multiple gold layers and an overlapping phenomenon of Zwischgold with other metal leaves are observed through PXCT. As supportive data, scanning electron microscopy (SEM) and scanning transmission electron microscopy (STEM) coupled with energy dispersive X-ray analysis (EDX) were performed on the medieval samples.

3.
Sci Adv ; 7(24)2021 Jun.
Article in English | MEDLINE | ID: mdl-34108209

ABSTRACT

The performance of functional materials is either driven or limited by nanoscopic heterogeneities distributed throughout the material's volume. To better our understanding of these materials, we need characterization tools that allow us to determine the nature and distribution of these heterogeneities in their native geometry in 3D. Here, we introduce a method based on x-ray near-edge spectroscopy, ptychographic x-ray computed nanotomography, and sparsity techniques. The method allows the acquisition of quantitative multimodal tomograms of representative sample volumes at sub-30 nm half-period spatial resolution within practical acquisition times, which enables local structure refinements in complex geometries. To demonstrate the method's capabilities, we investigated the transformation of vanadium phosphorus oxide catalysts with industrial use. We observe changes from the micrometer to the atomic level and the formation of a location-specific defect so far only theorized. These results led to a reevaluation of these catalysts used in the production of plastics.

4.
Science ; 372(6544): 826-831, 2021 05 21.
Article in English | MEDLINE | ID: mdl-34016774

ABSTRACT

Transmission electron microscopes use electrons with wavelengths of a few picometers, potentially capable of imaging individual atoms in solids at a resolution ultimately set by the intrinsic size of an atom. However, owing to lens aberrations and multiple scattering of electrons in the sample, the image resolution is reduced by a factor of 3 to 10. By inversely solving the multiple scattering problem and overcoming the electron-probe aberrations using electron ptychography, we demonstrate an instrumental blurring of less than 20 picometers and a linear phase response in thick samples. The measured widths of atomic columns are limited by thermal fluctuations of the atoms. Our method is also capable of locating embedded atomic dopant atoms in all three dimensions with subnanometer precision from only a single projection measurement.

5.
Chem Commun (Camb) ; 56(87): 13373-13376, 2020 Nov 03.
Article in English | MEDLINE | ID: mdl-33030473

ABSTRACT

X-ray linear dichroism and X-ray birefringence microscopy are yet to be fully utilized as instruments in the microstructural characterization of crystalline materials. Here, we demonstrate analyser-free X-ray linear dichroism microscopy using spectroscopic hard X-ray ptychography. First experiments enabled a spectroscopic and microstructural characterisation of polycrystalline vanadium pentoxide on the nanoscale, outside of diffraction-contrast based methods.


Subject(s)
Microscopy/methods , Nanoparticles/chemistry , Linear Models , X-Rays
6.
J Appl Crystallogr ; 53(Pt 4): 949-956, 2020 Aug 01.
Article in English | MEDLINE | ID: mdl-32788902

ABSTRACT

The pressing need for knowledge of the detailed wavefront properties of ultra-bright and ultra-short pulses produced by free-electron lasers has spurred the development of several complementary characterization approaches. Here a method based on ptychography is presented that can retrieve high-resolution complex-valued wavefunctions of individual pulses without strong constraints on the illumination or sample object used. The technique is demonstrated within experimental conditions suited for diffraction experiments and exploiting Kirkpatrick-Baez focusing optics. This lensless technique, applicable to many other short-pulse instruments, can achieve diffraction-limited resolution.

7.
Nat Commun ; 11(1): 2994, 2020 06 12.
Article in English | MEDLINE | ID: mdl-32533001

ABSTRACT

Both high resolution and high precision are required to quantitatively determine the atomic structure of complex nanostructured materials. However, for conventional imaging methods in scanning transmission electron microscopy (STEM), atomic resolution with picometer precision cannot usually be achieved for weakly-scattering samples or radiation-sensitive materials, such as 2D materials. Here, we demonstrate low-dose, sub-angstrom resolution imaging with picometer precision using mixed-state electron ptychography. We show that correctly accounting for the partial coherence of the electron beam is a prerequisite for high-quality structural reconstructions due to the intrinsic partial coherence of the electron beam. The mixed-state reconstruction gains importance especially when simultaneously pursuing high resolution, high precision and large field-of-view imaging. Compared with conventional atomic-resolution STEM imaging techniques, the mixed-state ptychographic approach simultaneously provides a four-times-faster acquisition, with double the information limit at the same dose, or up to a fifty-fold reduction in dose at the same resolution.

8.
J Synchrotron Radiat ; 27(Pt 3): 730-736, 2020 May 01.
Article in English | MEDLINE | ID: mdl-32381775

ABSTRACT

Across all branches of science, medicine and engineering, high-resolution microscopy is required to understand functionality. Although optical methods have been developed to `defeat' the diffraction limit and produce 3D images, and electrons have proven ever more useful in creating pictures of small objects or thin sections, so far there is no substitute for X-ray microscopy in providing multiscale 3D images of objects with a single instrument and minimal labeling and preparation. A powerful technique proven to continuously access length scales from 10 nm to 10 µm is ptychographic X-ray computed tomography, which, on account of the orthogonality of the tomographic rotation axis to the illuminating beam, still has the limitation of necessitating pillar-shaped samples of small (ca 10 µm) diameter. Large-area planar samples are common in science and engineering, and it is therefore highly desirable to create an X-ray microscope that can examine such samples without the extraction of pillars. Computed laminography, where the axis of rotation is not perpendicular to the illumination direction, solves this problem. This entailed the development of a new instrument, LamNI, dedicated to high-resolution 3D scanning X-ray microscopy via hard X-ray ptychographic laminography. Scanning precision is achieved by a dedicated interferometry scheme and the instrument covers a scan range of 12 mm × 12 mm with a position stability of 2 nm and positioning errors below 5 nm. A new feature of LamNI is a pair of counter-rotating stages carrying the sample and interferometric mirrors, respectively.

9.
J Appl Crystallogr ; 53(Pt 2): 574-586, 2020 Apr 01.
Article in English | MEDLINE | ID: mdl-32280327

ABSTRACT

Over the past decade, ptychography has been proven to be a robust tool for non-destructive high-resolution quantitative electron, X-ray and optical microscopy. It allows for quantitative reconstruction of the specimen's transmissivity, as well as recovery of the illuminating wavefront. Additionally, various algorithms have been developed to account for systematic errors and improved convergence. With fast ptychographic microscopes and more advanced algorithms, both the complexity of the reconstruction task and the data volume increase significantly. PtychoShelves is a software package which combines high-level modularity for easy and fast changes to the data-processing pipeline, and high-performance computing on CPUs and GPUs.

10.
Nat Nanotechnol ; 15(5): 356-360, 2020 May.
Article in English | MEDLINE | ID: mdl-32094498

ABSTRACT

Understanding and control of the dynamic response of magnetic materials with a three-dimensional magnetization distribution is important both fundamentally and for technological applications. From a fundamental point of view, the internal magnetic structure and dynamics in bulk materials still need to be mapped1, including the dynamic properties of topological structures such as vortices2, magnetic singularities3 or skyrmion lattices4. From a technological point of view, the response of inductive materials to magnetic fields and spin-polarized currents is essential for magnetic sensors and data storage devices5. Here, we demonstrate time-resolved magnetic laminography, a pump-probe technique, which offers access to the temporal evolution of a three-dimensional magnetic microdisc with nanoscale resolution, and with a synchrotron-limited temporal resolution of 70 ps. We image the dynamic response to a 500 MHz magnetic field of the complex three-dimensional magnetization in a two-phase bulk magnet with a lateral spatial resolution of 50 nm. This is achieved with a stroboscopic measurement consisting of eight time steps evenly spaced over 2 ns. These measurements map the spatial transition between domain wall motion and the dynamics of a uniform magnetic domain that is attributed to variations in the magnetization state across the phase boundary. Our technique, which probes three-dimensional magnetic structures with temporal resolution, enables the experimental investigation of functionalities arising from dynamic phenomena in bulk and three-dimensional patterned nanomagnets6.

11.
Nano Lett ; 20(2): 1305-1314, 2020 02 12.
Article in English | MEDLINE | ID: mdl-31951418

ABSTRACT

X-ray tomography has become an indispensable tool for studying complex 3D interior structures with high spatial resolution. Three-dimensional imaging using soft X-rays offers powerful contrast mechanisms but has seen limited success with tomography due to the restrictions imposed by the much lower energy of the probe beam. The generalized geometry of laminography, characterized by a tilted axis of rotation, provides nm-scale 3D resolution for the investigation of extended (mm range) but thin (µm to nm) samples that are well suited to soft X-ray studies. This work reports on the implementation of soft X-ray laminography (SoXL) at the scanning transmission X-ray spectromicroscope of the PolLux beamline at the Swiss Light Source, Paul Scherrer Institut, which enables 3D imaging of extended specimens from 270 to 1500 eV. Soft X-ray imaging provides contrast mechanisms for both chemical sensitivity to molecular bonds and oxidation states and magnetic dichroism due to the much stronger attenuation of X-rays in this energy range. The presented examples of applications range from functionalized nanomaterials to biological photonic crystals and sophisticated nanoscaled magnetic domain patterns, thus illustrating the wide fields of research that can benefit from SoXL.


Subject(s)
Contrast Media/chemistry , Imaging, Three-Dimensional/methods , Nanostructures/chemistry , Tomography, X-Ray/methods , Contrast Media/therapeutic use , Humans , Magnetics , Microscopy, Electron, Scanning , Nanostructures/therapeutic use , Photons , Radiography , X-Rays
12.
Opt Express ; 27(25): 36637-36652, 2019 Dec 09.
Article in English | MEDLINE | ID: mdl-31873438

ABSTRACT

As the resolution of X-ray tomography improves, the limited long-term stability and accuracy of nanoimaging tools does not allow computing artifact-free three-dimensional (3D) reconstructions without an additional step of numerical alignment of the measured projections. However, the common iterative alignment methods are significantly more computationally demanding than a simple tomographic reconstruction of the acquired volume. Here, we address this issue and present an alignment toolkit, which exploits methods with deep-subpixel accuracy combined with a multi-resolution scheme. This leads to robust and accurate alignment with significantly reduced computational and memory requirements. The performance of the presented methods is demonstrated on simulated and measured datasets for tomography and also laminography acquisition geometries. A GPU accelerated implementation of our alignment framework is publicly available.

13.
Opt Express ; 27(10): 14981-14997, 2019 May 13.
Article in English | MEDLINE | ID: mdl-31163938

ABSTRACT

We present a systematic study, where effects of the illumination probe design on ptychography reconstruction quality are evaluated under well-controlled conditions. The illumination probe was created using Fresnel zone-plate (FZP) optics with locally displaced zones to provide a fine control over perturbations of the illumination wavefront. We show that optimally designed wavefront modulations not only reduce bias and variance in the reconstruction of the lowest spatial frequencies but also lead to improved imaging resolution and reduction of artefacts compared to a conventional FZP. Both these factors are important for quantitative accuracy and resolution of ptychographic tomography. Our work furthers the understanding of the important characteristics of an optimal illumination for high-resolution X-ray ptychography and how to design optimal FZP wavefront modulations for different applications of ptychographic imaging. These findings are applicable and relevant for ptychography using optical, EUV, and X-ray photons as well as electrons.

14.
Nat Commun ; 10(1): 2600, 2019 06 13.
Article in English | MEDLINE | ID: mdl-31197135

ABSTRACT

Reaching the full potential of X-ray nanotomography, in particular for biological samples, is limited by many factors, of which one of the most serious is radiation damage. Although sample deformation caused by radiation damage can be partly mitigated by cryogenic protection, it is still present in these conditions and, as we exemplify here using a specimen extracted from scales of the Cyphochilus beetle, it will pose a limit to the achievable imaging resolution. We demonstrate a generalized tomographic model, which optimally follows the sample morphological changes and attempts to recover the original sample structure close to the ideal, damage-free reconstruction. Whereas our demonstration was performed using ptychographic X-ray tomography, the method can be adopted for any tomographic imaging modality. Our application demonstrates improved reconstruction quality of radiation-sensitive samples, which will be of increasing relevance with the higher brightness of 4th generation synchrotron sources.


Subject(s)
Imaging, Three-Dimensional/methods , Nanotechnology/methods , Tomography, X-Ray Computed/methods , Animal Scales/diagnostic imaging , Animals , Coleoptera
15.
J Synchrotron Radiat ; 26(Pt 2): 504-509, 2019 Mar 01.
Article in English | MEDLINE | ID: mdl-30855261

ABSTRACT

Scanning X-ray microscopy such as X-ray ptychography requires accurate and fast positioning of samples in the X-ray beam. Sample stages often have a high mobile mass as they may carry additional mechanics or mirrors for position measurements. The high mobile mass of a piezo stage can introduce vibrations in the setup that will lead to imaging quality deterioration. Sample stages also require a large travel range which results in a slow positioning step response and thus high positioning overhead. Moving lightweight X-ray optics, such as focusing Fresnel zone plates, instead of the sample can improve the situation but it may lead to undesired variations in the illumination probe which may result in reconstruction artifacts. This paper presents a combined approach in which a slow sample stage mechanism covers the long distance range for a large field of view, and a light-weight optics scanner with a small travel range creates a superimposed motion to achieve a fast step response. The step response in the ptychographic tomography instrument used was thereby improved by an order of magnitude, allowing for efficient measurement without loss of imaging quality.

16.
iScience ; 11: 356-365, 2019 Jan 25.
Article in English | MEDLINE | ID: mdl-30654322

ABSTRACT

The search for higher performance, improved safety, and lifetime of lithium-ion batteries relies on the understanding of degradation mechanisms. Complementary to methods and studies on primary particles or crystalline structure on bulk materials, here we use spatially correlated ptychographic X-ray computed nanotomography with a 35 nm resolution and scanning X-ray diffraction microscopy with 1 µm resolution to visualize in 3D the hidden morphological and structural degradation processes in individual secondary particles of lithium-rich nickel, cobalt, and manganese oxides. From comparative examination of pristine and cycled particles, we suggest that morphological degradation could have radial dependency and secondary particle size dependency. The same particles were examined to correlate the degradation to crystallinity, which shows surprising core-shell structures. This study reveals the inner 3D structure of the secondary particles while opening up questions on the unexpected crystalline structural distributions, which could offer clues for future studies on this promising cathode material for lithium-ion batteries.

17.
Opt Express ; 26(10): 12585-12593, 2018 May 14.
Article in English | MEDLINE | ID: mdl-29801297

ABSTRACT

Ptychography is a coherent diffractive imaging method that can provide a diffraction-limited, robust reconstruction of the sample's complex transmission function without the use of high-quality optics. However, the scanning nature of conventional X-ray ptychography unavoidably requires the mechanical motion of either the illumination probe or the sample. In order to avoid overhead related to breaking and acceleration for every scan position, so-called fly-scan methods were developed. Here, we present an improved variant that removes the limitation of continuous scanning along a linear scanning path and allows for ptychographic reconstruction of scans taken along an arbitrary 2D continuous trajectory. We also demonstrate numerically and experimentally that our method provides significantly improved robustness against noise, particularly for larger fly-scan steps, i.e. sample shift during an exposure, which will gain importance with the advent of 4th generation synchrotron sources, where the available coherent flux may be increased by orders of magnitude. Finally, we show that the use of a spiral scan continuous trajectory alleviates significantly raster grid artifacts.

18.
Opt Express ; 26(3): 3108-3123, 2018 Feb 05.
Article in English | MEDLINE | ID: mdl-29401843

ABSTRACT

Although ptychography does not require a precise knowledge of the illumination wavefront, common implementations rely upon assumptions such as accurate knowledge of the scan positions and constant illumination. Limited validity of these assumptions results in deterioration of the reconstruction quality. We present a generalized ptychography method that optimizes the reconstruction along multiple directions. In our manuscript, we demonstrate that the additional flexibility not only helps to amend imprecisions of the ptychography model in a self-consistent way but additionally leads to faster convergence without a significant increase of the computational cost per iteration.

19.
Opt Lett ; 41(13): 3057, 2016 Jul 01.
Article in English | MEDLINE | ID: mdl-27367100

ABSTRACT

This note amends the list of funders in a recent Letter [Opt. Lett.41, 1317 (2016)OPLEDP0146-959210.1364/OL.41.001317].

20.
Opt Lett ; 41(7): 1317-20, 2016 Apr 01.
Article in English | MEDLINE | ID: mdl-27192225

ABSTRACT

High-harmonic generation (HHG) provides a laboratory-scale source of coherent radiation ideally suited to lensless coherent diffractive imaging (CDI) in the EUV and x-ray spectral region. Here we demonstrate transmission extreme ultraviolet (EUV) ptychography, a scanning variant of CDI, using radiation at a wavelength around 29 nm from an HHG source. Image resolution is diffraction-limited at 54 nm and fields of view up to ∼100 µm are demonstrated. These results demonstrate the potential for wide-field, high-resolution, laboratory-scale EUV imaging using HHG-based sources with potential application in biological imaging or EUV lithography pellicle inspection.

SELECTION OF CITATIONS
SEARCH DETAIL
...