Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Results Probl Cell Differ ; 71: 407-432, 2024.
Article in English | MEDLINE | ID: mdl-37996688

ABSTRACT

Cell-cell fusion is a normal physiological mechanism that requires a well-orchestrated regulation of intracellular and extracellular factors. Dysregulation of this process could lead to diseases such as osteoporosis, malformation of muscles, difficulties in pregnancy, and cancer. Extensive literature demonstrates that fusion occurs between cancer cells and other cell types to potentially promote cancer progression and metastasis. However, the mechanisms governing this process in cancer initiation, promotion, and progression are less well-studied. Fusogens involved in normal physiological processes such as syncytins and associated factors such as phosphatidylserine and annexins have been observed to be critical in cancer cell fusion as well. Some of the extracellular factors associated with cancer cell fusion include chronic inflammation and inflammatory cytokines, hypoxia, and viral infection. The interaction between these extracellular factors and cell's intrinsic factors potentially modulates actin dynamics to drive the fusion of cancer cells. In this review, we have discussed the different mechanisms that have been identified or postulated to drive cancer cell fusion.


Subject(s)
Neoplasms , Humans , Cell Fusion , Neoplasms/pathology
2.
J Oleo Sci ; 64(7): 775-82, 2015.
Article in English | MEDLINE | ID: mdl-25994557

ABSTRACT

The inhibition of enzymes involved in the breakdown of carbohydrates is considered a therapeutic approach to the management of type-2 diabetes. This study sought to investigate the effects of essential oil from clove bud on α-amylase and α-glucosidase activities. Essential oil from clove bud was extracted by hydrodistillation, dried with anhydrous Na2SO4 and characterized using gas chromatography-mass spectrometry (GC-MS). The effects of the essential oil on α-amylase and α-glucosidase activities were investigated. The antioxidant properties of the oil and the inhibition of Fe(2+) and sodium nitroprusside-induced malondialdehyde (MDA) production in rats pancreas homogenate were also carried out. The essential oil inhibited α-amylase (EC50=88.9 µl/L) and α-glucosidase (EC50=71.94 µl/L) activities in a dose-dependent manner. Furthermore, the essential oil inhibited Fe(2+) and SNP-induced MDA production and exhibited antioxidant activities through their NO*, OH*, scavenging and Fe(2+)- chelating abilities. The total phenolic and flavonoid contents of the essential oil were 12.95 mg/g and 6.62 mg/g respectively. GC-MS analysis revealed the presence of α-pinene, ß-pinene, neral, geranial, gamma terpinene, cis-ocimene, allo ocimene, 1,8-cineole, linalool, borneol, myrcene and pinene-2-ol in significant amounts. Furthermore, the essential oils exhibited antioxidant activities as typified by hydroxyl (OH) and nitric oxide (NO)] radicals scavenging and Fe(2+)-chelating abilities. The inhibition of α-amylase and α-glucosidase activities, inhibition of pro-oxidant induced lipid peroxidation in rat pancreas and antioxidant activities could be possible mechanisms for the use of the essential oil in the management and prevention of oxidative stress induced type-2 diabetes.


Subject(s)
Antioxidants , Clove Oil/pharmacology , Diabetes Mellitus, Type 2/enzymology , Diabetes Mellitus, Type 2/etiology , Lipid Peroxidation/drug effects , Oils, Volatile/pharmacology , Pancreas/metabolism , Syzygium/chemistry , alpha-Amylases/metabolism , alpha-Glucosidases/metabolism , Animals , Clove Oil/chemistry , Clove Oil/isolation & purification , Depression, Chemical , Dose-Response Relationship, Drug , Ferrous Compounds/antagonists & inhibitors , Free Radical Scavengers , In Vitro Techniques , Iron Chelating Agents , Malondialdehyde/metabolism , Nitroprusside , Oils, Volatile/chemistry , Oils, Volatile/isolation & purification , Oxidative Stress , Rats , Reactive Oxygen Species
3.
Adv Pharmacol Sci ; 2013: 926047, 2013.
Article in English | MEDLINE | ID: mdl-24348547

ABSTRACT

The antioxidant properties and effect of essential oil of black pepper (Piper guineense) seeds on α -amylase, α -glucosidase (key enzymes linked to type-2 diabetes), and angiotensin-I converting enzyme (ACE) (key enzyme linked to hypertension) were assessed. The essential oil was obtained by hydrodistillation and dried with anhydrous Na2SO4, and the phenolic content, radical [1,1-diphenyl-2 picrylhydrazyl (DPPH), 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS) and nitric oxide (NO)] scavenging abilities as well as the ferric reducing antioxidant property (FRAP) and Fe(2+)-chelating ability of the essential oil were investigated. Furthermore, the effect on α -amylase, α -glucosidase, and ACE enzyme activities was also investigated. The characterization of the constituents was done using GC. The essential oil scavenged DPPH∗, NO∗, and ABTS∗ and chelated Fe(2+). α -Pinene, ß -pinene, cis-ocimene, myrcene, allo-ocimene, and 1,8-cineole were among the constituents identified by GC. The essential oil inhibited α -amylase, α -glucosidase, and ACE enzyme activities in concentration-dependent manners, though exhibiting a stronger inhibition of α -glucosidase than α -amylase activities. Conclusively, the phenolic content, antioxidant activity, and inhibition of α -amylase, α -glucosidase, and angiotensin-1 converting enzyme activities by the essential oil extract of black pepper could be part of the mechanism by which the essential oil could manage and/or prevent type-2 diabetes and hypertension.

SELECTION OF CITATIONS
SEARCH DETAIL
...