Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Cogn Neurodyn ; 18(3): 775-794, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38826669

ABSTRACT

In recent years, Alzheimer's disease (AD) has been a serious threat to human health. Researchers and clinicians alike encounter a significant obstacle when trying to accurately identify and classify AD stages. Several studies have shown that multimodal neuroimaging input can assist in providing valuable insights into the structural and functional changes in the brain related to AD. Machine learning (ML) algorithms can accurately categorize AD phases by identifying patterns and linkages in multimodal neuroimaging data using powerful computational methods. This study aims to assess the contribution of ML methods to the accurate classification of the stages of AD using multimodal neuroimaging data. A systematic search is carried out in IEEE Xplore, Science Direct/Elsevier, ACM DigitalLibrary, and PubMed databases with forward snowballing performed on Google Scholar. The quantitative analysis used 47 studies. The explainable analysis was performed on the classification algorithm and fusion methods used in the selected studies. The pooled sensitivity and specificity, including diagnostic efficiency, were evaluated by conducting a meta-analysis based on a bivariate model with the hierarchical summary receiver operating characteristics (ROC) curve of multimodal neuroimaging data and ML methods in the classification of AD stages. Wilcoxon signed-rank test is further used to statistically compare the accuracy scores of the existing models. With a 95% confidence interval of 78.87-87.71%, the combined sensitivity for separating participants with mild cognitive impairment (MCI) from healthy control (NC) participants was 83.77%; for separating participants with AD from NC, it was 94.60% (90.76%, 96.89%); for separating participants with progressive MCI (pMCI) from stable MCI (sMCI), it was 80.41% (74.73%, 85.06%). With a 95% confidence interval (78.87%, 87.71%), the Pooled sensitivity for distinguishing mild cognitive impairment (MCI) from healthy control (NC) participants was 83.77%, with a 95% confidence interval (90.76%, 96.89%), the Pooled sensitivity for distinguishing AD from NC was 94.60%, likewise (MCI) from healthy control (NC) participants was 83.77% progressive MCI (pMCI) from stable MCI (sMCI) was 80.41% (74.73%, 85.06%), and early MCI (EMCI) from NC was 86.63% (82.43%, 89.95%). Pooled specificity for differentiating MCI from NC was 79.16% (70.97%, 87.71%), AD from NC was 93.49% (91.60%, 94.90%), pMCI from sMCI was 81.44% (76.32%, 85.66%), and EMCI from NC was 85.68% (81.62%, 88.96%). The Wilcoxon signed rank test showed a low P-value across all the classification tasks. Multimodal neuroimaging data with ML is a promising future in classifying the stages of AD but more research is required to increase the validity of its application in clinical practice.

2.
J Pers Med ; 13(10)2023 Oct 14.
Article in English | MEDLINE | ID: mdl-37888107

ABSTRACT

Multimodal neuroimaging has gained traction in Alzheimer's Disease (AD) diagnosis by integrating information from multiple imaging modalities to enhance classification accuracy. However, effectively handling heterogeneous data sources and overcoming the challenges posed by multiscale transform methods remains a significant hurdle. This article proposes a novel approach to address these challenges. To harness the power of diverse neuroimaging data, we employ a strategy that leverages optimized convolution techniques. These optimizations include varying kernel sizes and the incorporation of instance normalization, both of which play crucial roles in feature extraction from magnetic resonance imaging (MRI) and positron emission tomography (PET) images. Specifically, varying kernel sizes allow us to adapt the receptive field to different image characteristics, enhancing the model's ability to capture relevant information. Furthermore, we employ transposed convolution, which increases spatial resolution of feature maps, and it is optimized with varying kernel sizes and instance normalization. This heightened resolution facilitates the alignment and integration of data from disparate MRI and PET data. The use of larger kernels and strides in transposed convolution expands the receptive field, enabling the model to capture essential cross-modal relationships. Instance normalization, applied to each modality during the fusion process, mitigates potential biases stemming from differences in intensity, contrast, or scale between modalities. This enhancement contributes to improved model performance by reducing complexity and ensuring robust fusion. The performance of the proposed fusion method is assessed on three distinct neuroimaging datasets, which include: Alzheimer's Disease Neuroimaging Initiative (ADNI), consisting of 50 participants each at various stages of AD for both MRI and PET (Cognitive Normal, AD, and Early Mild Cognitive); Open Access Series of Imaging Studies (OASIS), consisting of 50 participants each at various stages of AD for both MRI and PET (Cognitive Normal, Mild Dementia, Very Mild Dementia); and whole-brain atlas neuroimaging (AANLIB) (consisting of 50 participants each at various stages of AD for both MRI and PET (Cognitive Normal, AD). To evaluate the quality of the fused images generated via our method, we employ a comprehensive set of evaluation metrics, including Structural Similarity Index Measurement (SSIM), which assesses the structural similarity between two images; Peak Signal-to-Noise Ratio (PSNR), which measures how closely the generated image resembles the ground truth; Entropy (E), which assesses the amount of information preserved or lost during fusion; the Feature Similarity Indexing Method (FSIM), which assesses the structural and feature similarities between two images; and Edge-Based Similarity (EBS), which measures the similarity of edges between the fused and ground truth images. The obtained fused image is further evaluated using a Mobile Vision Transformer. In the classification of AD vs. Cognitive Normal, the model achieved an accuracy of 99.00%, specificity of 99.00%, and sensitivity of 98.44% on the AANLIB dataset.

3.
Brain Sci ; 13(7)2023 Jul 08.
Article in English | MEDLINE | ID: mdl-37508977

ABSTRACT

Alzheimer's disease (AD) is a neurological condition that gradually weakens the brain and impairs cognition and memory. Multimodal imaging techniques have become increasingly important in the diagnosis of AD because they can help monitor disease progression over time by providing a more complete picture of the changes in the brain that occur over time in AD. Medical image fusion is crucial in that it combines data from various image modalities into a single, better-understood output. The present study explores the feasibility of employing Pareto optimized deep learning methodologies to integrate Magnetic Resonance Imaging (MRI) and Positron Emission Tomography (PET) images through the utilization of pre-existing models, namely the Visual Geometry Group (VGG) 11, VGG16, and VGG19 architectures. Morphological operations are carried out on MRI and PET images using Analyze 14.0 software and after which PET images are manipulated for the desired angle of alignment with MRI image using GNU Image Manipulation Program (GIMP). To enhance the network's performance, transposed convolution layer is incorporated into the previously extracted feature maps before image fusion. This process generates feature maps and fusion weights that facilitate the fusion process. This investigation concerns the assessment of the efficacy of three VGG models in capturing significant features from the MRI and PET data. The hyperparameters of the models are tuned using Pareto optimization. The models' performance is evaluated on the ADNI dataset utilizing the Structure Similarity Index Method (SSIM), Peak Signal-to-Noise Ratio (PSNR), Mean-Square Error (MSE), and Entropy (E). Experimental results show that VGG19 outperforms VGG16 and VGG11 with an average of 0.668, 0.802, and 0.664 SSIM for CN, AD, and MCI stages from ADNI (MRI modality) respectively. Likewise, an average of 0.669, 0.815, and 0.660 SSIM for CN, AD, and MCI stages from ADNI (PET modality) respectively.

5.
Sensors (Basel) ; 22(3)2022 Jan 19.
Article in English | MEDLINE | ID: mdl-35161486

ABSTRACT

Alzheimer's disease (AD) is a neurodegenerative disease that affects brain cells, and mild cognitive impairment (MCI) has been defined as the early phase that describes the onset of AD. Early detection of MCI can be used to save patient brain cells from further damage and direct additional medical treatment to prevent its progression. Lately, the use of deep learning for the early identification of AD has generated a lot of interest. However, one of the limitations of such algorithms is their inability to identify changes in the functional connectivity in the functional brain network of patients with MCI. In this paper, we attempt to elucidate this issue with randomized concatenated deep features obtained from two pre-trained models, which simultaneously learn deep features from brain functional networks from magnetic resonance imaging (MRI) images. We experimented with ResNet18 and DenseNet201 to perform the task of AD multiclass classification. A gradient class activation map was used to mark the discriminating region of the image for the proposed model prediction. Accuracy, precision, and recall were used to assess the performance of the proposed system. The experimental analysis showed that the proposed model was able to achieve 98.86% accuracy, 98.94% precision, and 98.89% recall in multiclass classification. The findings indicate that advanced deep learning with MRI images can be used to classify and predict neurodegenerative brain diseases such as AD.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Neurodegenerative Diseases , Alzheimer Disease/diagnostic imaging , Brain/diagnostic imaging , Cognitive Dysfunction/diagnostic imaging , Humans , Magnetic Resonance Imaging , Neuroimaging
6.
Diagnostics (Basel) ; 11(6)2021 Jun 10.
Article in English | MEDLINE | ID: mdl-34200832

ABSTRACT

One of the first signs of Alzheimer's disease (AD) is mild cognitive impairment (MCI), in which there are small variants of brain changes among the intermediate stages. Although there has been an increase in research into the diagnosis of AD in its early levels of developments lately, brain changes, and their complexity for functional magnetic resonance imaging (fMRI), makes early detection of AD difficult. This paper proposes a deep learning-based method that can predict MCI, early MCI (EMCI), late MCI (LMCI), and AD. The Alzheimer's Disease Neuroimaging Initiative (ADNI) fMRI dataset consisting of 138 subjects was used for evaluation. The finetuned ResNet18 network achieved a classification accuracy of 99.99%, 99.95%, and 99.95% on EMCI vs. AD, LMCI vs. AD, and MCI vs. EMCI classification scenarios, respectively. The proposed model performed better than other known models in terms of accuracy, sensitivity, and specificity.

SELECTION OF CITATIONS
SEARCH DETAIL
...