Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Cancers (Basel) ; 14(17)2022 Aug 30.
Article in English | MEDLINE | ID: mdl-36077745

ABSTRACT

The vascular disrupting activity of a promising tubulin-binding agent (OXi6196) was demonstrated in mice in MDA-MB-231 human breast tumor xenografts growing orthotopically in mammary fat pad and syngeneic RENCA kidney tumors growing orthotopically in the kidney. To enhance water solubility, OXi6196, was derivatized as its corresponding phosphate prodrug salt OXi6197, facilitating effective delivery. OXi6197 is stable in water, but rapidly releases OXi6196 in the presence of alkaline phosphatase. At low nanomolar concentrations OXi6196 caused G2/M cell cycle arrest and apoptosis in MDA-MB-231 breast cancer cells and monolayers of rapidly growing HUVECs underwent concentration-dependent changes in their morphology. Loss of the microtubule structure and increased bundling of filamentous actin into stress fibers followed by cell collapse, rounding and blebbing was observed. OXi6196 (100 nM) disrupted capillary-like endothelial networks pre-established with HUVECs on Matrigel®. When prodrug OXi6197 was administered to mice bearing orthotopic MDA-MB-231-luc tumors, dynamic bioluminescence imaging (BLI) revealed dose-dependent vascular shutdown with >80% signal loss within 2 h at doses ≥30 mg/kg and >90% shutdown after 6 h for doses ≥35 mg/kg, which remained depressed by at least 70% after 24 h. Twice weekly treatment with prodrug OXi6197 (20 mg/kg) caused a significant tumor growth delay, but no overall survival benefit. Similar efficacy was observed for the first time in orthotopic RENCA-luc tumors, which showed massive hemorrhage and necrosis after 24 h. Twice weekly dosing with prodrug OXi6197 (35 mg/kg) caused tumor growth delay in most orthotopic RENCA tumors. Immunohistochemistry revealed extensive necrosis, though with surviving peripheral tissues. These results demonstrate effective vascular disruption at doses comparable to the most effective vascular-disrupting agents (VDAs) suggesting opportunities for further development.

2.
Cancers (Basel) ; 13(19)2021 Sep 24.
Article in English | MEDLINE | ID: mdl-34638255

ABSTRACT

The selective disruption of tumor-associated vasculature represents an attractive therapeutic approach. We have undertaken the first in vivo evaluation of KGP265, a water-soluble prodrug of a benzosuberene-based tubulin-binding agent, and found promising vascular-disrupting activity in three distinct tumor types. Dose escalation in orthotopic MDA-MB-231-luc breast tumor xenografts in mice indicated that higher doses produced more effective vascular shutdown, as revealed by dynamic bioluminescence imaging (BLI). In syngeneic orthotopic 4T1-luc breast and RENCA-luc kidney tumors, dynamic BLI and oxygen enhanced multispectral optoacoustic tomography (OE-MSOT) were used to compare vascular shutdown following the administration of KGP265 (7.5 mg/kg). The BLI signal and vascular oxygenation response (ΔsO2) to a gas breathing challenge were both significantly reduced within 2 h, indicating vascular disruption, which continued over 24 h. A correlative histology confirmed increased necrosis and hemorrhage. Twice-weekly doses of KGP265 caused significant growth delay in both MDA-MB-231 and 4T1 breast tumors, with no obvious systemic toxicity. A combination with carboplatin produced significantly greater tumor growth delay than carboplatin alone, though significant carboplatin-associated toxicity was observed (whole-body weight loss). KGP265 was found to be effective at low concentrations, generating long-term vascular shutdown and tumor growth delay, thus providing strong rationale for further development, particularly in combination therapies.

3.
J Pharmacol Exp Ther ; 370(3): 427-435, 2019 09.
Article in English | MEDLINE | ID: mdl-31197021

ABSTRACT

The Ca2+-sensing receptor (CaSR) detects small changes in extracellular calcium (Ca2+ e) concentration ([Ca2+]e) and transduces the signal into modulation of various signaling pathways. Ca2+-induced relaxation of isolated phenylephrine-contracted mesenteric arteries is mediated by the CaSR of the perivascular nerve. Elucidation of the regulatory mechanisms involved in vascular CaSR signaling may provide insights into the physiologic functions of the receptor and identify targets for the development of new treatments for cardiovascular pathologies such as hypertension. Protein kinase Cα (PKCα) is a critical regulator of multiple signaling pathways and can phosphorylate the CaSR leading to receptor desensitization. In this study, we used automated wire myography to investigate the effects of CaSR mutation and small-interfering RNA downregulation of PKCα on CaSR-mediated relaxation of phenylephrine-contracted mesenteric arteries from aged Dahl salt-sensitive (SS) rats on a low-salt diet. The data showed minimal relaxation responses of arteries to Ca2+ e in wild-type (SS) and CaSR mutant (SS-Casrem1Mcwi) rats. Mutation of the CaSR gene had no significant effect on relaxation. PKCα expression was similar in wild-type and mutant rats, and small-interfering RNA downregulation of PKCα and/or inhibition of PKC with the Ca2+-sensitive GÓ§ 6976 resulted in a >80% increase in relaxation. Significant differences in EC50 values were observed between treated and untreated controls (P < 0.05 analysis of variance). The results indicate that PKCα plays an important role in the regulation of CaSR-mediated relaxation of mesenteric arteries, and its downregulation or pharmacological inhibition may lead to an increased Ca2+ sensitivity of the receptor and reversal of age-related changes in vascular tone. SIGNIFICANCE STATEMENT: G protein-coupled CaSR signaling leads to the regulation of vascular tone and may, therefore, play a vital role in blood pressure regulation. The receptor has several PKC phosphorylation sites in the C-terminal intracellular tail that mediate desensitization. We have previously shown that activation of the CaSR in neuronal cells leads to PKC phosphorylation, indicating that protein kinase C is an important regulator of CaSR function. Therefore, PKC in the CaSR signaling pathway in mesenteric arteries is a potential target for the development of new therapeutic approaches to treat hypertension and age-related vascular dysfunction. The present studies show that small-interfering RNA downregulation of PKCα and pharmacological inhibition of PKC enhanced CaSR-mediated relaxation of phenylephrine-contracted mesenteric arteries from aged Dahl salt-sensitive rats.


Subject(s)
Calcium/metabolism , Down-Regulation , Extracellular Space/metabolism , Mesenteric Arteries/cytology , Mesenteric Arteries/physiology , Protein Kinase C/metabolism , Vasodilation , Animals , Extracellular Space/drug effects , Mesenteric Arteries/drug effects , Protein Kinase C/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Rats , Rats, Inbred Dahl , Receptors, Calcium-Sensing/metabolism , Signal Transduction/drug effects , Vasodilation/drug effects
4.
Bioorg Med Chem Lett ; 27(5): 1304-1310, 2017 03 01.
Article in English | MEDLINE | ID: mdl-28117205

ABSTRACT

The magnitude of expression of cathepsin L, often upregulated in the tumor microenvironment, correlates with the invasive and metastatic nature of certain tumors. Inhibition of cathepsin L represents an emerging strategy for the treatment of metastatic cancer. A potent, small-molecule inhibitor (referred to as KGP94) of cathepsin L, and new KGP94 analogues were synthesized. (3,5-Dibromophenyl)-(3-hydroxyphenyl) ketone thiosemicarbazone (22), with an IC50 value of 202nM, exhibited similar inhibitory activity against cathepsin L compared to KGP94 (IC50=189nM). Due to limited aqueous solubility of KGP94, a water-soluble phosphate salt (KGP420) was prepared in order to facilitate future in vivo studies. Enzymatic hydrolysis with alkaline phosphatase (ALP) demonstrated that the phosphate prodrug, KGP420, was readily converted to the parent compound, KGP94.


Subject(s)
Cathepsin L/antagonists & inhibitors , Organophosphates/chemistry , Prodrugs/chemical synthesis , Prodrugs/pharmacology , Thiosemicarbazones/chemical synthesis , Thiosemicarbazones/pharmacology , Thiourea/analogs & derivatives , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Enzyme Activation/drug effects , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Humans , Molecular Structure , Prodrugs/chemistry , Salts/chemical synthesis , Salts/pharmacology , Solubility , Thiosemicarbazones/chemistry , Thiourea/chemical synthesis , Thiourea/chemistry , Thiourea/pharmacology , Water/chemistry
5.
Bioorg Med Chem ; 23(21): 6974-92, 2015 Nov 01.
Article in English | MEDLINE | ID: mdl-26462052

ABSTRACT

Upregulation of cathepsin L in a variety of tumors and its ability to promote cancer cell invasion and migration through degradation of the extracellular matrix suggest that cathepsin L is a promising biological target for the development of anti-metastatic agents. Based on encouraging results from studies on benzophenone thiosemicarbazone cathepsin inhibitors, a series of fourteen benzoylbenzophenone thiosemicarbazone analogues were designed, synthesized, and evaluated for their inhibitory activity against cathepsins L and B. Thiosemicarbazone inhibitors 3-benzoylbenzophenone thiosemicarbazone 1, 1,3-bis(4-fluorobenzoyl)benzene thiosemicarbazone 8, and 1,3-bis(2-fluorobenzoyl)-5-bromobenzene thiosemicarbazone 32 displayed the greatest potency against cathepsin L with low IC50 values of 9.9 nM, 14.4 nM, and 8.1 nM, respectively. The benzoylbenzophenone thiosemicarbazone analogues evaluated were selective in their inhibition of cathepsin L compared to cathepsin B. Thiosemicarbazone analogue 32 inhibited invasion through Matrigel of MDA-MB-231 breast cancer cells by 70% at 10 µM. Thiosemicarbazone analogue 8 significantly inhibited the invasive potential of PC-3ML prostate cancer cells by 92% at 5 µM. The most active cathepsin L inhibitors from this benzoylbenzophenone thiosemicarbazone series (1, 8, and 32) displayed low cytotoxicity toward normal primary cells [in this case human umbilical vein endothelial cells (HUVECs)]. In an initial in vivo study, 3-benzoylbenzophenone thiosemicarbazone (1) was well-tolerated in a CDF1 mouse model bearing an implanted C3H mammary carcinoma, and showed efficacy in tumor growth delay. Low cytotoxicity, inhibition of cell invasion, and in vivo tolerability are desirable characteristics for anti-metastatic agents functioning through an inhibition of cathepsin L. Active members of this structurally diverse group of benzoylbenzophenone thiosemicarbazone cathepsin L inhibitors show promise as potential anti-metastatic, pre-clinical drug candidates.


Subject(s)
Antineoplastic Agents/chemical synthesis , Cathepsin L/antagonists & inhibitors , Cysteine Proteinase Inhibitors/chemical synthesis , Thiosemicarbazones/chemistry , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Benzophenones/chemistry , Binding Sites , Cathepsin B/antagonists & inhibitors , Cathepsin B/metabolism , Cathepsin L/metabolism , Cell Line, Tumor , Cell Movement/drug effects , Cell Survival/drug effects , Cysteine Proteinase Inhibitors/pharmacology , Cysteine Proteinase Inhibitors/therapeutic use , Drug Design , Female , Human Umbilical Vein Endothelial Cells , Humans , Inhibitory Concentration 50 , Isomerism , Kinetics , Mammary Neoplasms, Animal/drug therapy , Mice , Molecular Docking Simulation , Protein Structure, Tertiary , Thiosemicarbazones/pharmacology , Thiosemicarbazones/therapeutic use , Transplantation, Heterologous
6.
Cancer Lett ; 369(1): 229-41, 2015 Dec 01.
Article in English | MEDLINE | ID: mdl-26325604

ABSTRACT

This study describes the vascular disrupting ability and the mechanism of action of the indole-based tubulin-binding compound, OXi8006, and its water-soluble phosphate prodrug OXi8007. Treatment of rapidly proliferating human umbilical vein endothelial cells (HUVECs), used as a model for the tumor vasculature, with OXi8006 or OXi8007, caused potent microtubule disruption followed by extensive reorganization of the cytoskeletal network. The mechanism of action involved an increase in focal adhesion formation associated with an increase in phosphorylation of both non-muscle myosin light chain and focal adhesion kinase. These effects were dramatically diminished by an inhibitor of RhoA kinase, a downstream effector of RhoA. Cell cycle blockade at G2/M and cytotoxicity toward rapidly proliferating HUVECs were also observed. Capillary-like networks of HUVECs were disrupted by the action of both OXi8006 and OXi8007. The prodrug OXi8007 exhibited potent and rapid dose-dependent antivascular activity assessed by dynamic bioluminescence imaging (BLI) in an MDA-MB-231-luc breast cancer xenograft mouse model. By 6 hours post treatment, over 93% of the BLI signal was abolished with only a slight recovery at 24 hours. These findings were confirmed by histology. The results from this study demonstrate that OXi8007 is a potent vascular disrupting agent acting through an anti-microtubule mechanism involving RhoA.


Subject(s)
Antineoplastic Agents/pharmacology , Breast Neoplasms/drug therapy , Human Umbilical Vein Endothelial Cells/drug effects , Indoles/pharmacology , Animals , Antineoplastic Agents/therapeutic use , Breast Neoplasms/blood supply , Cell Adhesion/drug effects , Cell Line, Tumor , Cytoskeleton/drug effects , Cytoskeleton/pathology , Female , Focal Adhesions/metabolism , Human Umbilical Vein Endothelial Cells/pathology , Humans , Indoles/therapeutic use , Mice, SCID , Phosphorylation , Protein Processing, Post-Translational , Signal Transduction , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...