Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Arch Toxicol ; 88(2): 345-54, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24071787

ABSTRACT

The toxicity of hexabromocyclododecane (HBCDD) has been extensively studied; however, the mechanism and the effects of HBCDD on female reproductive system have been less frequently reported. In this study, we exposed rat granulosa cells to HBCDD during in vitro follicle-stimulating hormone (FSH)-driven cell proliferation and differentiation. Here, we show that HBCDD affects the FSH-driven signal transduction and ovulatory competence of granulosa cells. We found that HBCDD over-activates the FSH-stimulated extracellular-regulated kinase 1/2 (ERK1/2) and protein kinase B (PKB, also known as AKT). Inactivation of the epidermal growth factor receptor (EGFR) kinase activity with AG1478 and the mitogen-regulated kinase activity with U0126 completely prevented ERK1/2 activation in the FSH-stimulated and HBCDD-exposed granulosa cells. Moreover, AG1478 restored the HBCDD-induced AKT activation to the level observed in the FSH-stimulated cells. Western blot shows that HBCDD potentiates FSH-stimulated EGFR phosphorylation in granulosa cells. Real-time PCR demonstrates that HBCDD decreases the FSH-induced luteinizing hormone receptor (Lhr) expression. Inadequate level of LHR in the HBCDD-exposed granulosa cells prevented human chorionic gonadotropin in stimulating expression of the ovulatory genes such as amphiregulin (Areg), epiregulin (Ereg), and progesterone receptor (Pgr). Addition of U0126 and AG1478 restored Lhr level in the FSH-stimulated and HBCDD-exposed granulosa cells. These results indicate a direct effect of HBCDD on EGFR activation, resulting in over-activation of ERK1/2 and AKT signal transduction pathways in the FSH-treated cells. Increased activity of the EGFR-ERK1/2 pathway above physiological level prevents sufficient acquisition of LHR in proliferating granulosa cells, thus compromising ovulation.


Subject(s)
ErbB Receptors/metabolism , Follicle Stimulating Hormone/pharmacology , Granulosa Cells/drug effects , Hydrocarbons, Brominated/toxicity , Proto-Oncogene Proteins c-akt/metabolism , Animals , Butadienes/pharmacology , Cells, Cultured , ErbB Receptors/antagonists & inhibitors , Female , Gene Expression Regulation/drug effects , Granulosa Cells/metabolism , MAP Kinase Signaling System/drug effects , Nitriles/pharmacology , Phosphorylation/drug effects , Quinazolines , Rats , Rats, Wistar , Receptors, LH/genetics , Toxicity Tests/methods , Tyrphostins
SELECTION OF CITATIONS
SEARCH DETAIL
...