Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Exp Hematol ; : 104246, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38763471

ABSTRACT

Key studies in pre-leukemic disorders have linked increases in pro-inflammatory cytokines with accelerated phases of the disease, but the precise role of the cellular microenvironment in disease initiation and evolution remains poorly understood. In myeloproliferative neoplasms (MPNs), higher levels of specific cytokines have been previously correlated with increased disease severity (tumor necrosis factor-alpha [TNF-α], interferon gamma-induced protein-10 [IP-10 or CXCL10]) and decreased survival (interleukin 8 [IL-8]). Whereas TNF-α and IL-8 have been studied by numerous groups, there is a relative paucity of studies on IP-10 (CXCL10). Here we explore the relationship of IP-10 levels with detailed genomic and clinical data and undertake a complementary cytokine screen alongside functional assays in a wide range of MPN mouse models. Similar to patients, levels of IP-10 were increased in mice with more severe disease phenotypes (e.g., JAK2V617F/V617F TET2-/- double-mutant mice) compared with those with less severe phenotypes (e.g., CALRdel52 or JAK2+/V617F mice) and wild-type (WT) littermate controls. Although exposure to IP-10 did not directly alter proliferation or survival in single hematopoietic stem cells (HSCs) in vitro, IP-10-/- mice transplanted with disease-initiating HSCs developed an MPN phenotype more slowly, suggesting that the effect of IP-10 loss was noncell-autonomous. To explore the broader effects of IP-10 loss, we crossed IP-10-/- mice into a series of MPN mouse models and showed that its loss reduces the erythrocytosis observed in mice with the most severe phenotype. Together, these data point to a potential role for blocking IP-10 activity in the management of MPNs.

2.
Stem Cell Reports ; 16(6): 1614-1628, 2021 06 08.
Article in English | MEDLINE | ID: mdl-33961793

ABSTRACT

Advances in the isolation and gene expression profiling of single hematopoietic stem cells (HSCs) have permitted in-depth resolution of their molecular program. However, long-term HSCs can only be isolated to near purity from adult mouse bone marrow, thereby precluding studies of their molecular program in different physiological states. Here, we describe a powerful 7-day HSC hibernation culture system that maintains HSCs as single cells in the absence of a physical niche. Single hibernating HSCs retain full functional potential compared with freshly isolated HSCs with respect to colony-forming capacity and transplantation into primary and secondary recipients. Comparison of hibernating HSC molecular profiles to their freshly isolated counterparts showed a striking degree of molecular similarity, further resolving the core molecular machinery of HSC self-renewal while also identifying key factors that are potentially dispensable for HSC function, including members of the AP1 complex (Jun, Fos, and Ncor2), Sult1a1 and Cish. Finally, we provide evidence that hibernating mouse HSCs can be transduced without compromising their self-renewal activity and demonstrate the applicability of hibernation cultures to human HSCs.


Subject(s)
Arylsulfotransferase/metabolism , Cell Culture Techniques/methods , Hematopoietic Stem Cells/physiology , Signaling Lymphocytic Activation Molecule Family Member 1/metabolism , Suppressor of Cytokine Signaling Proteins/metabolism , Transcription Factor AP-1/metabolism , Transcriptome , Animals , Bone Marrow Transplantation/methods , Cell Cycle , Cell Differentiation , Cells, Cultured , Cytokines/metabolism , Hibernation , Mice , Mice, Inbred C57BL , Multiprotein Complexes/metabolism , Single-Cell Analysis , Stem Cell Niche
3.
Blood Cancer Discov ; 2(2): 135-145, 2021 03.
Article in English | MEDLINE | ID: mdl-33778768

ABSTRACT

Myelodysplastic syndrome (MDS) are clonal stem cell diseases characterized mainly by ineffective hematopoiesis. Here, we present an approach that enables robust long-term engraftment of primary MDS stem cells (MDS-SCs) in mice by implantation of human mesenchymal cell-seeded scaffolds. Critically for modelling MDS, where patient sample material is limiting, mononuclear bone marrow cells containing as few as 104 CD34+ cells can be engrafted and expanded by this approach with the maintenance of the genetic make-up seen in the patients. Non-invasive high-resolution ultrasound imaging shows that these scaffolds are fully perfused. Our data shows that human microenvironment but not mouse is essential to MDS-SCs homing and engraftment. Notably, the alternative niche provided by healthy donor MSCs enhanced engraftment of MDS-SCs. This study characterizes a new tool to model MDS human disease with the level of engraftment previously unattainable in mice, and offers insights into human-specific determinants of MDS-SC microenvironment.


Subject(s)
Mesenchymal Stem Cells , Myelodysplastic Syndromes , Animals , Bone Marrow Cells , Hematopoiesis , Humans , Mice , Stem Cells
4.
Mucosal Immunol ; 14(1): 26-37, 2021 01.
Article in English | MEDLINE | ID: mdl-32457448

ABSTRACT

Type-2 immunity is characterised by interleukin (IL)-4, IL-5 and IL-13, eosinophilia, mucus production, IgE, and alternatively activated macrophages (AAM). However, despite the lack of neutrophil chemoattractants such as CXCL1, neutrophils, a feature of type-1 immunity, are observed in type-2 responses. Consequently, alternative mechanisms must exist to ensure that neutrophils can contribute to type-2 immune reactions without escalation of deleterious inflammation. We now demonstrate that type-2 immune-associated neutrophil infiltration is regulated by the mouse RNase A homologue, eosinophil-associated ribonuclease 11 (Ear11), which is secreted by AAM downstream of IL-25-stimulated ILC2. Transgenic overexpression of Ear11 resulted in tissue neutrophilia, whereas Ear11-deficient mice have fewer resting tissue neutrophils, whilst other type-2 immune responses are not impaired. Notably, administration of recombinant mouse Ear11 increases neutrophil motility and recruitment. Thus, Ear11 helps maintain tissue neutrophils at homoeostasis and during type-2 reactions when chemokine-producing classically activated macrophages are infrequently elicited.


Subject(s)
Immunity, Innate , Lymphocytes/physiology , Macrophage Activation/immunology , Macrophages/physiology , Neutrophil Infiltration/immunology , Neutrophils/physiology , Ribonucleases/biosynthesis , Animals , Dendritic Cells/immunology , Dendritic Cells/metabolism , Eosinophils/immunology , Eosinophils/metabolism , Immunomodulation , Immunophenotyping , Interleukin-13/biosynthesis , Lung/immunology , Lung/metabolism , Lung/pathology , Mice , Mice, Transgenic , Ribonucleases/genetics
5.
Blood ; 132(8): 791-803, 2018 08 23.
Article in English | MEDLINE | ID: mdl-29991556

ABSTRACT

Recent advances in single-cell technologies have permitted the investigation of heterogeneous cell populations at previously unattainable resolution. Here we apply such approaches to resolve the molecular mechanisms driving disease in mouse hematopoietic stem cells (HSCs), using JAK2V617F mutant myeloproliferative neoplasms (MPNs) as a model. Single-cell gene expression and functional assays identified a subset of JAK2V617F mutant HSCs that display defective self-renewal. This defect is rescued at the single HSC level by crossing JAK2V617F mice with mice lacking TET2, the most commonly comutated gene in patients with MPN. Single-cell gene expression profiling of JAK2V617F-mutant HSCs revealed a loss of specific regulator genes, some of which were restored to normal levels in single TET2/JAK2 mutant HSCs. Of these, Bmi1 and, to a lesser extent, Pbx1 and Meis1 overexpression in JAK2-mutant HSCs could drive a disease phenotype and retain durable stem cell self-renewal in functional assays. Together, these single-cell approaches refine the molecules involved in clonal expansion of MPNs and have broad implications for deconstructing the molecular network of normal and malignant stem cells.


Subject(s)
Cell Self Renewal , Gene Expression Regulation, Neoplastic , Hematologic Neoplasms/metabolism , Hematopoietic Stem Cells/metabolism , Janus Kinase 2/metabolism , Mutation, Missense , Myeloproliferative Disorders/metabolism , Neoplasm Proteins/metabolism , Neoplastic Stem Cells/metabolism , Amino Acid Substitution , Animals , Hematologic Neoplasms/genetics , Hematologic Neoplasms/pathology , Hematopoietic Stem Cells/pathology , Janus Kinase 2/genetics , Mice , Mice, Transgenic , Myeloproliferative Disorders/genetics , Myeloproliferative Disorders/pathology , Neoplasm Proteins/genetics , Neoplastic Stem Cells/pathology
6.
Cell Stem Cell ; 16(6): 712-24, 2015 Jun 04.
Article in English | MEDLINE | ID: mdl-26004780

ABSTRACT

Heterogeneity within the self-renewal durability of adult hematopoietic stem cells (HSCs) challenges our understanding of the molecular framework underlying HSC function. Gene expression studies have been hampered by the presence of multiple HSC subtypes and contaminating non-HSCs in bulk HSC populations. To gain deeper insight into the gene expression program of murine HSCs, we combined single-cell functional assays with flow cytometric index sorting and single-cell gene expression assays. Through bioinformatic integration of these datasets, we designed an unbiased sorting strategy that separates non-HSCs away from HSCs, and single-cell transplantation experiments using the enriched population were combined with RNA-seq data to identify key molecules that associate with long-term durable self-renewal, producing a single-cell molecular dataset that is linked to functional stem cell activity. Finally, we demonstrated the broader applicability of this approach for linking key molecules with defined cellular functions in another stem cell system.


Subject(s)
Gene Expression Regulation , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Single-Cell Analysis/methods , Animals , Cell Differentiation/genetics , Cell Lineage/genetics , Cell Proliferation , Clone Cells , Gene Expression Profiling , Genome , Hematopoietic Stem Cell Transplantation , Humans , Mice, Inbred C57BL
SELECTION OF CITATIONS
SEARCH DETAIL
...