Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Acta Physiol (Oxf) ; 240(4): e14124, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38436094

ABSTRACT

AIM: Exercise intolerance is the central symptom in patients with heart failure with preserved ejection fraction. In the present study, we investigated the adrenergic reserve both in vivo and in cardiomyocytes of a murine cardiometabolic HFpEF model. METHODS: 12-week-old male C57BL/6J mice were fed regular chow (control) or a high-fat diet and L-NAME (HFpEF) for 15 weeks. At 27 weeks, we performed (stress) echocardiography and exercise testing and measured the adrenergic reserve and its modulation by nitric oxide and reactive oxygen species in left ventricular cardiomyocytes. RESULTS: HFpEF mice (preserved left ventricular ejection fraction, increased E/e', pulmonary congestion [wet lung weight/TL]) exhibited reduced exercise capacity and a reduction of stroke volume and cardiac output with adrenergic stress. In ventricular cardiomyocytes isolated from HFpEF mice, sarcomere shortening had a higher amplitude and faster relaxation compared to control animals. Increased shortening was caused by a shift of myofilament calcium sensitivity. With addition of isoproterenol, there were no differences in sarcomere function between HFpEF and control mice. This resulted in a reduced inotropic and lusitropic reserve in HFpEF cardiomyocytes. Preincubation with inhibitors of nitric oxide synthases or glutathione partially restored the adrenergic reserve in cardiomyocytes in HFpEF. CONCLUSION: In this murine HFpEF model, the cardiac output reserve on adrenergic stimulation is impaired. In ventricular cardiomyocytes, we found a congruent loss of the adrenergic inotropic and lusitropic reserve. This was caused by increased contractility and faster relaxation at rest, partially mediated by nitro-oxidative signaling.


Subject(s)
Heart Failure , Ventricular Function, Left , Humans , Male , Animals , Mice , Stroke Volume , Ventricular Function, Left/physiology , Adrenergic Agents , Disease Models, Animal , Nitric Oxide , Mice, Inbred C57BL
2.
bioRxiv ; 2023 Sep 23.
Article in English | MEDLINE | ID: mdl-37790349

ABSTRACT

Women are the main target of intimate partner violence (IPV), which is escalating worldwide. Mechanisms subtending IPV-related disorders, such as anxiety, depression and PTSD, remain unclear. We employed a mouse model molded on an IPV scenario (male vs. female prolonged violent interaction) to unearth the neuroendocrine alterations triggered by an aggressive male mouse on the female murine brain. Experimental IPV (EIPV) prompted marked anxiety-like behavior in young female mice, coincident with high circulating/cerebral corticosterone levels. The hippocampus of EIPV-inflicted female animals displayed neuronal loss, reduced BrdU-DCX-positive nuclei, decreased mature DCX-positive cells, and diminished dendritic arborization level in the dentate gyrus (DG), features denoting impaired neurogenesis and neuronal differentiation. These hallmarks were associated with marked down-regulation of estrogen receptor ß (ERß) density in the hippocampus, especially in the DG and dependent prosurvival ERK signaling. Conversely, ERα expression was unchanged. After EIPV, the DG harbored lowered local BDNF pools, diminished TrkB phosphorylation, and elevated glucocorticoid receptor phosphorylation. In unison, ERß KO mice had heightened anxiety-like behavior and curtailed BDNF levels at baseline, despite enhanced circulating estradiol levels, while dying prematurely during EIPV. Thus, reiterated male-to-female violence jeopardizes hippocampal homeostasis in the female brain, perturbing ERß/BDNF signaling, thus instigating anxiety and chronic stress.

3.
J Cardiovasc Comput Tomogr ; 17(5): 310-317, 2023.
Article in English | MEDLINE | ID: mdl-37541910

ABSTRACT

BACKGROUND: The coronary atheroma burden drives major adverse cardiovascular events (MACE) in patients with suspected coronary heart disease (CHD). However, a consensus on how to grade disease burden for effective risk stratification is lacking. The purpose of this study was to compare the effectiveness of common CHD grading tools to risk stratify symptomatic patients. METHODS: We analyzed the 5-year outcome of 381 prospectively enrolled patients in the CORE320 international, multicenter study using baseline clinical and cardiac computer-tomography (CT) imaging characteristics, including coronary artery calcium score (CACS), percent atheroma volume, "high-risk" plaque, disease severity grading using the CAD-RADS, and two simplified CAD staging systems. We applied Cox proportional hazard models and area under the curve (AUC) analysis to predict MACE or hard MACE, defined as death, myocardial infarction, or stroke. Analyses were stratified by a history of CHD. Additional forward selection analysis was performed to evaluate incremental value of metrics. RESULTS: Clinical characteristics were the strongest predictors of MACE in the overall cohort. In patients without history of CHD, CACS remained the only independent predictor of MACE yielding an AUC of 73 (CI 67-79) vs. 64 (CI 57-70) for clinical characteristics. Noncalcified plaque volume did not add prognostic value. Simple CHD grading schemes yielded similar risk stratification as the CAD-RADS classification. Forward selection analysis confirmed prominent role of CACS and revealed usefulness of functional testing in subgroup with known CHD. CONCLUSION: In patients referred for invasive angiography, a history of CHD was the strongest predictor of MACE. In patients without history of CHD, a coronary calcium score yielded at least equal risk stratification vs. more complex CHD grading.


Subject(s)
Angina, Stable , Coronary Artery Disease , Plaque, Atherosclerotic , Humans , Angina, Stable/diagnostic imaging , Angina, Stable/therapy , Calcium , Computed Tomography Angiography/methods , Coronary Angiography/methods , Coronary Artery Disease/diagnostic imaging , Coronary Artery Disease/therapy , Multidetector Computed Tomography , Predictive Value of Tests , Prognosis , Risk Assessment , Risk Factors
4.
Basic Res Cardiol ; 118(1): 9, 2023 03 20.
Article in English | MEDLINE | ID: mdl-36939901

ABSTRACT

Precision-based molecular phenotyping of heart failure must overcome limited access to cardiac tissue. Although epigenetic alterations have been found to underlie pathological cardiac gene dysregulation, the clinical utility of myocardial epigenomics remains narrow owing to limited clinical access to tissue. Therefore, the current study determined whether patient plasma confers indirect phenotypic, transcriptional, and/or epigenetic alterations to ex vivo cardiomyocytes to mirror the failing human myocardium. Neonatal rat ventricular myocytes (NRVMs) and single-origin human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) and were treated with blood plasma samples from patients with dilated cardiomyopathy (DCM) and donor subjects lacking history of cardiovascular disease. Following plasma treatments, NRVMs and hiPSC-CMs underwent significant hypertrophy relative to non-failing controls, as determined via automated high-content screening. Array-based DNA methylation analysis of plasma-treated hiPSC-CMs and cardiac biopsies uncovered robust, and conserved, alterations in cardiac DNA methylation, from which 100 sites were validated using an independent cohort. Among the CpG sites identified, hypo-methylation of the ATG promoter was identified as a diagnostic marker of HF, wherein cg03800765 methylation (AUC = 0.986, P < 0.0001) was found to out-perform circulating NT-proBNP levels in differentiating heart failure. Taken together, these findings support a novel approach of indirect epigenetic testing in human HF.


Subject(s)
Heart Failure , Induced Pluripotent Stem Cells , Humans , Rats , Animals , Myocytes, Cardiac/pathology , DNA Methylation , Epigenomics , Heart Failure/diagnosis , Heart Failure/genetics , Heart Failure/pathology , Epigenesis, Genetic
5.
Life Sci Alliance ; 5(6)2022 06.
Article in English | MEDLINE | ID: mdl-35288456

ABSTRACT

Tuberous sclerosis complex-2 (TSC2) negatively regulates mammalian target of rapamycin complex 1 (mTORC1), and its activity is reduced by protein kinase B (Akt) and extracellular response kinase (ERK1/2) phosphorylation to activate mTORC1. Serine 1364 (human) on TSC2 bidirectionally modifies mTORC1 activation by pathological growth factors or hemodynamic stress but has no impact on resting activity. We now show this modification biases to ERK1/2 but not Akt-dependent TSC2-mTORC1 activation. Endothelin-1-stimulated mTORC1 requires ERK1/2 activation and is bidirectionally modified by phospho-mimetic (S1364E) or phospho-silenced (S1364A) mutations. However, mTORC1 activation by Akt-dependent stimuli (insulin or PDGF) is unaltered by S1364 modification. Thrombin stimulates both pathways, yet only the ERK1/2 component is modulated by S1364. S1364 also has negligible impact on mTORC1 regulation by energy or nutrient status. In vivo, diet-induced obesity, diabetes, and fatty liver couple to Akt activation and are also unaltered by TSC2 S1364 mutations. This contrasts to prior reports showing a marked impact of both on pathological pressure-stress. Thus, S1364 provides ERK1/2-selective mTORC1 control and a genetic means to modify pathological versus physiological mTOR stimuli.


Subject(s)
MAP Kinase Signaling System , Mechanistic Target of Rapamycin Complex 1 , Tuberous Sclerosis Complex 2 Protein , Humans , Mechanistic Target of Rapamycin Complex 1/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Serine/metabolism , Tuberous Sclerosis Complex 2 Protein/genetics , Tuberous Sclerosis Complex 2 Protein/metabolism , Tumor Suppressor Proteins/metabolism
6.
J Clin Invest ; 131(21)2021 11 01.
Article in English | MEDLINE | ID: mdl-34618683

ABSTRACT

Central obesity with cardiometabolic syndrome (CMS) is a major global contributor to human disease, and effective therapies are needed. Here, we show that cyclic GMP-selective phosphodiesterase 9A inhibition (PDE9-I) in both male and ovariectomized female mice suppresses preestablished severe diet-induced obesity/CMS with or without superimposed mild cardiac pressure load. PDE9-I reduces total body, inguinal, hepatic, and myocardial fat; stimulates mitochondrial activity in brown and white fat; and improves CMS, without significantly altering activity or food intake. PDE9 localized at mitochondria, and its inhibition in vitro stimulated lipolysis in a PPARα-dependent manner and increased mitochondrial respiration in both adipocytes and myocytes. PPARα upregulation was required to achieve the lipolytic, antiobesity, and metabolic effects of PDE9-I. All these PDE9-I-induced changes were not observed in obese/CMS nonovariectomized females, indicating a strong sexual dimorphism. We found that PPARα chromatin binding was reoriented away from fat metabolism-regulating genes when stimulated in the presence of coactivated estrogen receptor-α, and this may underlie the dimorphism. These findings have translational relevance given that PDE9-I is already being studied in humans for indications including heart failure, and efficacy against obesity/CMS would enhance its therapeutic utility.


Subject(s)
3',5'-Cyclic-AMP Phosphodiesterases/metabolism , Adipose Tissue/embryology , Metabolic Syndrome/enzymology , Obesity/enzymology , 3',5'-Cyclic-AMP Phosphodiesterases/genetics , Animals , Female , Male , Metabolic Syndrome/genetics , Mice , Mice, Transgenic , Mitochondria/enzymology , Mitochondria/genetics , Obesity/genetics , PPAR alpha/genetics , PPAR alpha/metabolism
7.
Int J Mol Sci ; 22(11)2021 May 31.
Article in English | MEDLINE | ID: mdl-34073033

ABSTRACT

Atrial fibrillation (AF) is the most common sustained (atrial) arrhythmia, a considerable global health burden and often associated with heart failure. Perturbations of redox signalling in cardiomyocytes provide a cellular substrate for the manifestation and maintenance of atrial arrhythmias. Several clinical trials have shown that treatment with sodium-glucose linked transporter inhibitors (SGLTi) improves mortality and hospitalisation in heart failure patients independent of the presence of diabetes. Post hoc analysis of the DECLARE-TIMI 58 trial showed a 19% reduction in AF in patients with diabetes mellitus (hazard ratio, 0.81 (95% confidence interval: 0.68-0.95), n = 17.160) upon treatment with SGLTi, regardless of pre-existing AF or heart failure and independent from blood pressure or renal function. Accordingly, ongoing experimental work suggests that SGLTi not only positively impact heart failure but also counteract cellular ROS production in cardiomyocytes, thereby potentially altering atrial remodelling and reducing AF burden. In this article, we review recent studies investigating the effect of SGLTi on cellular processes closely interlinked with redox balance and their potential effects on the onset and progression of AF. Despite promising insight into SGLTi effect on Ca2+ cycling, Na+ balance, inflammatory and fibrotic signalling, mitochondrial function and energy balance and their potential effect on AF, the data are not yet conclusive and the importance of individual pathways for human AF remains to be established. Lastly, an overview of clinical studies investigating SGLTi in the context of AF is provided.


Subject(s)
Atrial Fibrillation/drug therapy , Myocytes, Cardiac , Oxidation-Reduction/drug effects , Oxidative Stress/drug effects , Sodium-Glucose Transporter 1/antagonists & inhibitors , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Animals , Calcium/metabolism , Cells, Cultured , Humans , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/pathology , Reactive Oxygen Species/metabolism
8.
Circ Res ; 128(5): 639-651, 2021 03 05.
Article in English | MEDLINE | ID: mdl-33401933

ABSTRACT

RATIONALE: The mTORC1 (mechanistic target of rapamycin complex-1) controls metabolism and protein homeostasis and is activated following ischemia reperfusion (IR) injury and by ischemic preconditioning (IPC). However, studies vary as to whether this activation is beneficial or detrimental, and its influence on metabolism after IR is little reported. A limitation of prior investigations is their use of broad gain/loss of mTORC1 function, mostly applied before ischemic stress. This can be circumvented by regulating one serine (S1365) on TSC2 (tuberous sclerosis complex) to achieve bidirectional mTORC1 modulation but only with TCS2-regulated costimulation. OBJECTIVE: We tested the hypothesis that reduced TSC2 S1365 phosphorylation protects the myocardium against IR and is required for IPC by amplifying mTORC1 activity to favor glycolytic metabolism. METHODS AND RESULTS: Mice with either S1365A (TSC2SA; phospho-null) or S1365E (TSC2SE; phosphomimetic) knockin mutations were studied ex vivo and in vivo. In response to IR, hearts from TSC2SA mice had amplified mTORC1 activation and improved heart function compared with wild-type and TSC2SE hearts. The magnitude of protection matched IPC. IPC requited less S1365 phosphorylation, as TSC2SE hearts gained no benefit and failed to activate mTORC1 with IPC. IR metabolism was altered in TSC2SA, with increased mitochondrial oxygen consumption rate and glycolytic capacity (stressed/maximal extracellular acidification) after myocyte hypoxia-reperfusion. In whole heart, lactate increased and long-chain acylcarnitine levels declined during ischemia. The relative IR protection in TSC2SA was lost by lowering glucose in the perfusate by 36%. Adding fatty acid (palmitate) compensated for reduced glucose in wild type and TSC2SE but not TSC2SA which had the worst post-IR function under these conditions. CONCLUSIONS: TSC2-S1365 phosphorylation status regulates myocardial substrate utilization, and its decline activates mTORC1 biasing metabolism away from fatty acid oxidation to glycolysis to confer protection against IR. This pathway is also engaged and reduced TSC2 S1365 phosphorylation required for effective IPC. Graphic Abstract: A graphic abstract is available for this article.


Subject(s)
Glycolysis , Mechanistic Target of Rapamycin Complex 1/metabolism , Myocardial Reperfusion Injury/metabolism , Myocytes, Cardiac/metabolism , Animals , Carnitine/analogs & derivatives , Carnitine/metabolism , Cells, Cultured , Glucose/metabolism , Ischemic Preconditioning , Lactic Acid/metabolism , Male , Mice , Mice, Inbred C57BL , Mitochondria, Heart/metabolism , Mutation , Myocardial Reperfusion Injury/therapy , Oxygen/metabolism , Phosphorylation , Rats , Tuberous Sclerosis Complex 2 Protein/genetics , Tuberous Sclerosis Complex 2 Protein/metabolism
9.
Front Physiol ; 11: 858, 2020.
Article in English | MEDLINE | ID: mdl-32848832

ABSTRACT

Impaired or insufficient protein kinase G (PKG) signaling and protein quality control (PQC) are hallmarks of most forms of cardiac disease, including heart failure. Their dysregulation has been shown to contribute to and exacerbate cardiac hypertrophy and remodeling, reduced cell survival and disease pathogenesis. Enhancement of PKG signaling and PQC are associated with improved cardiac function and survival in many pre-clinical models of heart disease. While many clinically used pharmacological approaches exist to stimulate PKG, there are no FDA-approved therapies to safely enhance cardiomyocyte PQC. The latter is predominantly due to our lack of knowledge and identification of proteins regulating cardiomyocyte PQC. Recently, multiple studies have demonstrated that PKG regulates PQC in the heart, both during physiological and pathological states. These studies tested already FDA-approved pharmacological therapies to activate PKG, which enhanced cardiomyocyte PQC and alleviated cardiac disease. This review examines the roles of PKG and PQC during disease pathogenesis and summarizes the experimental and clinical data supporting the utility of stimulating PKG to target cardiac proteotoxicity.

10.
Circ Res ; 127(4): 522-533, 2020 07 31.
Article in English | MEDLINE | ID: mdl-32393148

ABSTRACT

RATIONALE: Stimulated PKG1α (protein kinase G-1α) phosphorylates TSC2 (tuberous sclerosis complex 2) at serine 1365, potently suppressing mTORC1 (mechanistic [mammalian] target of rapamycin complex 1) activation by neurohormonal and hemodynamic stress. This reduces pathological hypertrophy and dysfunction and increases autophagy. PKG1α oxidation at cysteine-42 is also induced by these stressors, which blunts its cardioprotective effects. OBJECTIVE: We tested the dependence of mTORC1 activation on PKG1α C42 oxidation and its capacity to suppress such activation by soluble GC-1 (guanylyl cyclase 1) activation. METHODS AND RESULTS: Cardiomyocytes expressing wild-type (WT) PKG1α (PKG1αWT) or cysteine-42 to serine mutation redox-dead (PKG1αCS/CS) were exposed to ET-1 (endothelin 1). Cells expressing PKG1αWT exhibited substantial mTORC1 activation (p70 S6K [p70 S6 kinase], 4EBP1 [elF4E binding protein-1], and Ulk1 [Unc-51-like kinase 1] phosphorylation), reduced autophagy/autophagic flux, and abnormal protein aggregation; all were markedly reversed by PKG1αCS/CS expression. Mice with global knock-in of PKG1αCS/CS subjected to pressure overload (PO) also displayed markedly reduced mTORC1 activation, protein aggregation, hypertrophy, and ventricular dysfunction versus PO in PKG1αWT mice. Cardioprotection against PO was equalized between groups by co-treatment with the mTORC1 inhibitor everolimus. TSC2-S1365 phosphorylation increased in PKG1αCS/CS more than PKG1αWT myocardium following PO. TSC2S1365A/S1365A (TSC2 S1365 phospho-null, created by a serine to alanine mutation) knock-in mice lack TSC2 phosphorylation by PKG1α, and when genetically crossed with PKG1αCS/CS mice, protection against PO-induced mTORC1 activation, cardiodepression, and mortality in PKG1αCS/CS mice was lost. Direct stimulation of GC-1 (BAY-602770) offset disparate mTORC1 activation between PKG1αWT and PKG1αCS/CS after PO and blocked ET-1 stimulated mTORC1 in TSC2S1365A-expressing myocytes. CONCLUSIONS: Oxidation of PKG1α at C42 reduces its phosphorylation of TSC2, resulting in amplified PO-stimulated mTORC1 activity and associated hypertrophy, dysfunction, and depressed autophagy. This is ameliorated by direct GC-1 stimulation.


Subject(s)
Cardiomegaly/metabolism , Cyclic GMP-Dependent Protein Kinase Type I/metabolism , Guanylate Cyclase/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Myocytes, Cardiac/metabolism , Animals , Aorta , Autophagy/physiology , Benzoates/metabolism , Biphenyl Compounds/metabolism , Constriction, Pathologic , Cyclic GMP-Dependent Protein Kinase Type I/genetics , Cysteine/metabolism , Endothelin-1/pharmacology , Enzyme Activation , Everolimus/pharmacology , Gene Knock-In Techniques , Hydrocarbons, Fluorinated/metabolism , Mechanistic Target of Rapamycin Complex 1/antagonists & inhibitors , Mice , Mice, Inbred C57BL , Myocytes, Cardiac/drug effects , Oxidation-Reduction , Oxidative Stress , Phosphorylation , Pressure , Proteostasis , Rats , Tuberous Sclerosis Complex 2 Protein/genetics , Tuberous Sclerosis Complex 2 Protein/metabolism
12.
Nature ; 566(7743): 264-269, 2019 02.
Article in English | MEDLINE | ID: mdl-30700906

ABSTRACT

The mechanistic target of rapamycin complex-1 (mTORC1) coordinates regulation of growth, metabolism, protein synthesis and autophagy1. Its hyperactivation contributes to disease in numerous organs, including the heart1,2, although broad inhibition of mTORC1 risks interference with its homeostatic roles. Tuberin (TSC2) is a GTPase-activating protein and prominent intrinsic regulator of mTORC1 that acts through modulation of RHEB (Ras homologue enriched in brain). TSC2 constitutively inhibits mTORC1; however, this activity is modified by phosphorylation from multiple signalling kinases that in turn inhibits (AMPK and GSK-3ß) or stimulates (AKT, ERK and RSK-1) mTORC1 activity3-9. Each kinase requires engagement of multiple serines, impeding analysis of their role in vivo. Here we show that phosphorylation or gain- or loss-of-function mutations at either of two adjacent serine residues in TSC2 (S1365 and S1366 in mice; S1364 and S1365 in humans) can bidirectionally control mTORC1 activity stimulated by growth factors or haemodynamic stress, and consequently modulate cell growth and autophagy. However, basal mTORC1 activity remains unchanged. In the heart, or in isolated cardiomyocytes or fibroblasts, protein kinase G1 (PKG1) phosphorylates these TSC2 sites. PKG1 is a primary effector of nitric oxide and natriuretic peptide signalling, and protects against heart disease10-13. Suppression of hypertrophy and stimulation of autophagy in cardiomyocytes by PKG1 requires TSC2 phosphorylation. Homozygous knock-in mice that express a phosphorylation-silencing mutation in TSC2 (TSC2(S1365A)) develop worse heart disease and have higher mortality after sustained pressure overload of the heart, owing to mTORC1 hyperactivity that cannot be rescued by PKG1 stimulation. However, cardiac disease is reduced and survival of heterozygote Tsc2S1365A knock-in mice subjected to the same stress is improved by PKG1 activation or expression of a phosphorylation-mimicking mutation (TSC2(S1365E)). Resting mTORC1 activity is not altered in either knock-in model. Therefore, TSC2 phosphorylation is both required and sufficient for PKG1-mediated cardiac protection against pressure overload. The serine residues identified here provide a genetic tool for bidirectional regulation of the amplitude of stress-stimulated mTORC1 activity.


Subject(s)
Cyclic GMP-Dependent Protein Kinases/metabolism , Heart Diseases/prevention & control , Heart Diseases/physiopathology , Mechanistic Target of Rapamycin Complex 1/metabolism , Tuberous Sclerosis Complex 2 Protein/chemistry , Tuberous Sclerosis Complex 2 Protein/metabolism , Animals , Autophagy , Cells, Cultured , Disease Progression , Enzyme Activation , Everolimus/pharmacology , Female , Gene Knock-In Techniques , HEK293 Cells , Heart Diseases/genetics , Heart Diseases/pathology , Humans , Hypertrophy/drug therapy , Hypertrophy/pathology , Male , Mechanistic Target of Rapamycin Complex 1/antagonists & inhibitors , Mice , Mutation , Myocytes, Cardiac/pathology , Phosphorylation , Phosphoserine/metabolism , Pressure , Rats , Rats, Wistar , Serine/genetics , Serine/metabolism , Tuberous Sclerosis Complex 2 Protein/genetics
13.
Mol Metab ; 5(2): 67-78, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26909315

ABSTRACT

OBJECTIVES: Cancer cachexia affects the majority of tumor patients and significantly contributes to high mortality rates in these subjects. Despite its clinical importance, the identity of tumor-borne signals and their impact on specific peripheral organ systems, particularly the heart, remain mostly unknown. METHODS AND RESULTS: By combining differential colon cancer cell secretome profiling with large-scale cardiomyocyte phenotyping, we identified a signature panel of seven "cachexokines", including Bridging integrator 1, Syntaxin 7, Multiple inositol-polyphosphate phosphatase 1, Glucosidase alpha acid, Chemokine ligand 2, Adamts like 4, and Ataxin-10, which were both sufficient and necessary to trigger cardiac atrophy and aberrant fatty acid metabolism in cardiomyocytes. As a prototypical example, engineered secretion of Ataxin-10 from non-cachexia-inducing cells was sufficient to induce cachexia phenotypes in cardiomyocytes, correlating with elevated Ataxin-10 serum levels in murine and human cancer cachexia models. CONCLUSIONS: As Ataxin-10 serum levels were also found to be elevated in human cachectic cancer patients, the identification of Ataxin-10 as part of a cachexokine cocktail now provides a rational approach towards personalized predictive, diagnostic and therapeutic measures in cancer cachexia.

14.
Drug Des Devel Ther ; 7: 297-303, 2013.
Article in English | MEDLINE | ID: mdl-23630415

ABSTRACT

BACKGROUND: Type 2 Diabetes mellitus (T2DM) is a common comorbidity in patients after heart transplantation (HTx) and is associated with adverse long-term outcomes. METHODS: The retrospective study reported here analyzed the effects of vildagliptin therapy in stable patients post-HTx with T2DM and compared these with control patients for matched-pairs analysis. A total of 30 stable patients post-HTx with T2DM were included in the study. Fifteen patients (mean age 58.6 ± 6.0 years, mean time post-HTx 4.9 ± 5.3 years, twelve male and three female) were included in the vildagliptin group (VG) and 15 patients were included in the control group (CG) (mean age 61.2 ± 8.3 years, mean time post-HTx 7.2 ± 6.6 years, all male). RESULTS: Mean glycated hemoglobin (HbA1c) in the VG was 7.4% ± 0.7% before versus 6.8% ± 0.8% after 8 months of vildagliptin therapy (P = 0.002 vs baseline). In the CG, HbA1c was 7.0% ± 0.7% versus 7.3% ± 1.2% at follow-up (P = 0.21). Additionally, there was a significant reduction in mean blood glucose in the VG, from 165.0 ± 18.8 mg/dL to 147.9 ± 22.7 mg/dL (P = 0.002 vs baseline), whereas mean blood glucose increased slightly in the CG from 154.7 ± 19.7 mg/dL to 162.6 ± 35.0 mg/dL (P = 0.21). No statistically significant changes in body weight (from 83.3 ± 10.8 kg to 82.0 ± 10.9 kg, P = 0.20), total cholesterol (1.5%, P = 0.68), or triglyceride levels (8.0%, P = 0.65) were seen in the VG. No significant changes in immunosuppressive drug levels or dosages were observed in either group. CONCLUSION: Vildagliptin therapy significantly reduced HbA1c and mean blood glucose levels in post-HTx patients in this study with T2DM and did not have any negative effects on lipid profile or body weight. Thus, vildagliptin therapy presented an interesting therapeutic approach for this selected patient cohort.


Subject(s)
Adamantane/analogs & derivatives , Diabetes Mellitus, Type 2/drug therapy , Dipeptidyl-Peptidase IV Inhibitors/therapeutic use , Heart Transplantation/adverse effects , Nitriles/therapeutic use , Pyrrolidines/therapeutic use , Adamantane/adverse effects , Adamantane/therapeutic use , Aged , Blood Glucose/analysis , Body Weight/drug effects , Diabetes Mellitus, Type 2/blood , Female , Glycated Hemoglobin/analysis , Humans , Immunosuppressive Agents/therapeutic use , Lipids/blood , Male , Middle Aged , Nitriles/adverse effects , Pyrrolidines/adverse effects , Retrospective Studies , Vildagliptin
SELECTION OF CITATIONS
SEARCH DETAIL
...