Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Publication year range
1.
Phys Chem Chem Phys ; 15(42): 18589-99, 2013 Nov 14.
Article in English | MEDLINE | ID: mdl-24076746

ABSTRACT

The structural changes of a (111) oriented CeO2 film grown on a Si(111) substrate covered with a hex-Pr2O3(0001) interface layer due to post deposition annealing are investigated. X-ray photoelectron spectroscopy measurements revealing the near surface stoichiometry show that the film reduces continuously upon extended heat treatment. The film is not homogeneously reduced since several coexisting crystalline ceria phases are stabilized due to subsequent annealing at different temperatures as revealed by high resolution low energy electron diffraction and X-ray diffraction. The electron diffraction measurements show that after annealing at 660 °C the ι-phase (Ce7O12) is formed at the surface which exhibits a (√7 × âˆš7)R19.1° structure. Furthermore, a (√27 × âˆš27)R30° surface structure with a stoichiometry close to Ce2O3 is stabilized after annealing at 860 °C which cannot be attributed to any bulk phase of ceria stable at room temperature. In addition, it is shown that the fully reduced ceria (Ce2O3) film exhibits a bixbyite structure. Polycrystalline silicate (CeSi(x)O(y)) and crystalline silicide (CeSi1.67) are formed at 850 °C and detected at the surface after annealing above 900 °C.

2.
Int J Artif Organs ; 13(11): 742-6, 1990 Nov.
Article in English | MEDLINE | ID: mdl-2089012

ABSTRACT

Accounting for the non-Newtonian blood viscosity by the Quemada descriptive viscosity equation, we deduced velocity profiles and volumetric capillary flows from the Navier-Stokes-equation. An arbitrary axial and/or radial hematocrit profile can be chosen. The hematocrit dependence of the intrinsic viscosities k0 (H) (characterizing, at least in part, the RBC aggregation) and k infinity (H) (describing orientation/deformation of RBC) was taken into account. Velocity profiles for pressure gradients of 4-4000 Pa/cm show a distinct flattening, if a pronounced axial migration of RBC is assumed. The higher the axial concentration, the higher the flow at the same pressure gradient. Small deviations (less than or equal to 10%) of the capillary number per dialyzer or of the radius of capillaries lead to a strong change of the pressure gradient with the same dialyzer flow. Whereas small hydraulic conductivities do not significantly change this gradient, high conductivities decrease the pressure gradient by about 10%. Impaired blood flow properties (hemoconcentration) result in a slight deviation from the linear axial pressure drop.


Subject(s)
Capillaries/physiology , Hematocrit , Models, Cardiovascular , Blood Flow Velocity , Blood Viscosity , Renal Dialysis , Rheology , Vascular Resistance/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...