Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 602(7897): 420-424, 2022 02.
Article in English | MEDLINE | ID: mdl-35173346

ABSTRACT

Einstein's theory of general relativity states that clocks at different gravitational potentials tick at different rates relative to lab coordinates-an effect known as the gravitational redshift1. As fundamental probes of space and time, atomic clocks have long served to test this prediction at distance scales from 30 centimetres to thousands of kilometres2-4. Ultimately, clocks will enable the study of the union of general relativity and quantum mechanics once they become sensitive to the finite wavefunction of quantum objects oscillating in curved space-time. Towards this regime, we measure a linear frequency gradient consistent with the gravitational redshift within a single millimetre-scale sample of ultracold strontium. Our result is enabled by improving the fractional frequency measurement uncertainty by more than a factor of 10, now reaching 7.6 × 10-21. This heralds a new regime of clock operation necessitating intra-sample corrections for gravitational perturbations.

2.
Opt Lett ; 46(3): 592-595, 2021 Feb 01.
Article in English | MEDLINE | ID: mdl-33528416

ABSTRACT

Mechanical loss of dielectric mirror coatings sets fundamental limits for both gravitational wave detectors and cavity-stabilized optical local oscillators for atomic clocks. Two approaches are used to determine the mechanical loss: ringdown measurements of the coating quality factor and direct measurement of the coating thermal noise. Here we report a systematic study of the mirror thermal noise at 4, 16, 124, and 300 K by operating reference cavities at these temperatures. The directly measured thermal noise is used to extract the mechanical loss for SiO2/Ta2O5 coatings, which are compared with previously reported values.

3.
Nature ; 588(7838): 408-413, 2020 12.
Article in English | MEDLINE | ID: mdl-33328666

ABSTRACT

The preparation of large, low-entropy, highly coherent ensembles of identical quantum systems is fundamental for many studies in quantum metrology1, simulation2 and information3. However, the simultaneous realization of these properties remains a central challenge in quantum science across atomic and condensed-matter systems2,4-7. Here we leverage the favourable properties of tweezer-trapped alkaline-earth (strontium-88) atoms8-10, and introduce a hybrid approach to tailoring optical potentials that balances scalability, high-fidelity state preparation, site-resolved readout and preservation of atomic coherence. With this approach, we achieve trapping and optical-clock excited-state lifetimes exceeding 40 seconds in ensembles of approximately 150 atoms. This leads to half-minute-scale atomic coherence on an optical-clock transition, corresponding to quality factors well in excess of 1016. These coherence times and atom numbers reduce the effect of quantum projection noise to a level that is comparable with that of leading atomic systems, which use optical lattices to interrogate many thousands of atoms in parallel11,12. The result is a relative fractional frequency stability of 5.2(3) × 10-17τ-1/2 (where τ is the averaging time in seconds) for synchronous clock comparisons between sub-ensembles within the tweezer array. When further combined with the microscopic control and readout that are available in this system, these results pave the way towards long-lived engineered entanglement on an optical-clock transition13 in tailored atom arrays.

4.
Phys Rev Lett ; 125(20): 201302, 2020 Nov 13.
Article in English | MEDLINE | ID: mdl-33258619

ABSTRACT

We conduct frequency comparisons between a state-of-the-art strontium optical lattice clock, a cryogenic crystalline silicon cavity, and a hydrogen maser to set new bounds on the coupling of ultralight dark matter to standard model particles and fields in the mass range of 10^{-16}-10^{-21} eV. The key advantage of this two-part ratio comparison is the differential sensitivity to time variation of both the fine-structure constant and the electron mass, achieving a substantially improved limit on the moduli of ultralight dark matter, particularly at higher masses than typical atomic spectroscopic results. Furthermore, we demonstrate an extension of the search range to even higher masses by use of dynamical decoupling techniques. These results highlight the importance of using the best-performing atomic clocks for fundamental physics applications, as all-optical timescales are increasingly integrated with, and will eventually supplant, existing microwave timescales.

5.
Phys Rev Lett ; 123(17): 173201, 2019 Oct 25.
Article in English | MEDLINE | ID: mdl-31702265

ABSTRACT

We report on the first timescale based entirely on optical technology. Existing timescales, including those incorporating optical frequency standards, rely exclusively on microwave local oscillators owing to the lack of an optical oscillator with the required frequency predictability and stability for reliable steering. We combine a cryogenic silicon cavity exhibiting improved long-term stability and an accurate ^{87}Sr lattice clock to form a timescale that outperforms them all. Our timescale accumulates an estimated time error of only 48±94 ps over 34 days of operation. Our analysis indicates that this timescale is capable of reaching a stability below 1×10^{-17} after a few months of averaging, making timekeeping at the 10^{-18} level a realistic prospect.

6.
Science ; 366(6461): 93-97, 2019 10 04.
Article in English | MEDLINE | ID: mdl-31515245

ABSTRACT

Coherent control of high-quality factor optical transitions in atoms has revolutionized precision frequency metrology. Leading optical atomic clocks rely on the interrogation of such transitions in either single ions or ensembles of neutral atoms to stabilize a laser frequency at high precision and accuracy. We demonstrate a platform that combines the key strengths of these two approaches, based on arrays of individual strontium atoms held within optical tweezers. We report coherence times of 3.4 seconds, single-ensemble duty cycles up to 96% through repeated interrogation, and frequency stability of 4.7 × 10-16 (τ/s)-1/2 These results establish optical tweezer arrays as a powerful tool for coherent control of optical transitions for metrology and quantum information science.

7.
Phys Rev Lett ; 116(4): 041102, 2016 Jan 29.
Article in English | MEDLINE | ID: mdl-26871318

ABSTRACT

Quantum vacuum fluctuations impose strict limits on precision displacement measurements, those of interferometric gravitational-wave detectors among them. Introducing squeezed states into an interferometer's readout port can improve the sensitivity of the instrument, leading to richer astrophysical observations. However, optomechanical interactions dictate that the vacuum's squeezed quadrature must rotate by 90° around 50 Hz. Here we use a 2-m-long, high-finesse optical resonator to produce frequency-dependent rotation around 1.2 kHz. This demonstration of audio-band frequency-dependent squeezing uses technology and methods that are scalable to the required rotation frequency and validates previously developed theoretical models, heralding application of the technique in future gravitational-wave detectors.

SELECTION OF CITATIONS
SEARCH DETAIL
...