Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Imaging ; 8(3)2022 Mar 18.
Article in English | MEDLINE | ID: mdl-35324633

ABSTRACT

The main objective of this paper was to demonstrate the capability of dedicated small satellite infrared sensors with cooled quantum detectors, such as those successfully utilized three times in Germany's pioneering BIRD and FireBIRD small satellite infrared missions, in the quantitative characterization of high-temperature events such as wildfires. The Bi-spectral Infrared Detection (BIRD) mission was launched in October 2001. The space segment of FireBIRD consists of the small satellites Technologie Erprobungs-Träger (TET-1), launched in July 2012, and Bi-spectral InfraRed Optical System (BIROS), launched in June 2016. These missions also significantly improved the scientific understanding of space-borne fire monitoring with regard to climate change. The selected examples compare the evaluation of quantitative characteristics using data from BIRD or FireBIRD and from the operational polar orbiting IR sensor systems MODIS, SLSTR and VIIRS. Data from the geostationary satellite "Himawari-8" were compared with FireBIRD data, obtained simultaneously. The geostationary Meteosat Third Generation-Imager (MTG-I) is foreseen to be launched at the end of 2022. In its application to fire, the MTG-I's Flexible Combined Imager (FCI) will provide related spectral bands at ground sampling distances (GSD) of 3.8 µm and 10.5 µm at the sub-satellite point (SSP) of 1 km or 2 km, depending on the used FCI imaging mode. BIRD wildfire data, obtained over Africa and Portugal, were used to simulate the fire detection and monitoring capability of MTG-I/FCI. A new quality of fire monitoring is predicted, if the 1 km resolution wildfire data from MTG-1/FCI are used together with the co-located fire data acquired by the polar orbiting Visible Infrared Imaging Radiometer Suite (VIIRS), and possibly prospective FireBIRD-type compact IR sensors flying on several small satellites in various low Earth orbits (LEOs).

2.
J Imaging ; 8(2)2022 Feb 16.
Article in English | MEDLINE | ID: mdl-35200751

ABSTRACT

Space-borne infrared remote sensing specifically for the detection and characterization of fires has a long history in the DLR Institute of Optical Sensor Systems. In the year 2001, the first DLR experimental satellite, Bi-spectral Infrared Detection (BIRD), was launched after an intensive test period with cooled IR sensor systems on airborne systems. The main basis for the development of the FireBIRD mission with the two satellites, Technology Erprobungsträger No 1 (TET-1) and Bi-spectral-Infrared Optical System (BIROS), was the already space-proven sensor and satellite technology with successfully tested algorithms for fire detection and quantification in the form of the so-called fire radiation power (FRP). This paper summarizes the development principles for the IR sensor system of FireBIRD and the most critical design elements of the TET-1 and BIROS satellites, especially concerning the attitude control system-all very essential tools for high-resolution infrared fire monitoring. Key innovative tools necessary to increase the agility of small IR satellites are discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...