Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Biochemistry ; 58(13): 1764-1773, 2019 04 02.
Article in English | MEDLINE | ID: mdl-30839203

ABSTRACT

Deoxynucleotide misincorporation efficiencies can span a wide 104-fold range, from ∼10-2 to ∼10-6, depending principally on polymerase (pol) identity and DNA sequence context. We have addressed DNA pol fidelity mechanisms from a transition-state (TS) perspective using our "tool-kit" of dATP- and dGTP-ß,γ substrate analogues in which the pyrophosphate leaving group (p Ka4 = 8.9) has been replaced by a series of bisphosphonates covering a broad acidity range spanning p Ka4 values from 7.8 (CF2) to 12.3 [C(CH3)2]. Here, we have used a linear free energy relationship (LFER) analysis, in the form of a Brønsted plot of log( kpol) versus p Ka4, for Y-family error-prone pol η and X-family pols λ and ß to determine the extent to which different electrostatic active site environments alter kpol values. The apparent chemical rate constant ( kpol) is the rate-determining step for the three pols. The pols each exhibit a distinct catalytic signature that differs for formation of right (A·T) and wrong (G·T) incorporations observed as changes in slopes and displacements of the Brønsted lines, in relation to a reference LFER. Common to this signature among all three pols is a split linear pattern in which the analogues containing two halogens show kpol values that are systematically lower than would be predicted from their p Ka4 values measured in aqueous solution. We discuss how metal ions and active site amino acids are responsible for causing "effective" p Ka4 values that differ for dihalo and non-dihalo substrates as well as for individual R and S stereoisomers for CHF and CHCl.


Subject(s)
DNA Polymerase beta/metabolism , DNA Polymerase gamma/metabolism , DNA-Directed DNA Polymerase/metabolism , Base Pairing , Catalytic Domain , DNA Polymerase beta/chemistry , DNA Polymerase gamma/chemistry , DNA-Directed DNA Polymerase/chemistry , Deoxyadenine Nucleotides/metabolism , Deoxyguanine Nucleotides/metabolism , Humans , Kinetics , Substrate Specificity , Thermodynamics
2.
Biochemistry ; 57(26): 3925-3933, 2018 07 03.
Article in English | MEDLINE | ID: mdl-29889506

ABSTRACT

We examine the DNA polymerase ß (pol ß) transition state (TS) from a leaving group pre-steady-state kinetics perspective by measuring the rate of incorporation of dNTPs and corresponding novel ß,γ-CXY-dNTP analogues, including individual ß,γ-CHF and -CHCl diastereomers with defined stereochemistry at the bridging carbon, during the formation of right (R) and wrong (W) base pairs. Brønsted plots of log kpol versus p Ka4 of the leaving group bisphosphonic acids are used to interrogate the effects of the base identity, the dNTP analogue leaving group basicity, and the precise configuration of the C-X atom in R and S stereoisomers on the rate-determining step ( kpol). The dNTP analogues provide a range of leaving group basicity and steric properties by virtue of monohalogen, dihalogen, or methyl substitution at the carbon atom bridging the ß,γ-bisphosphonate that mimics the natural pyrophosphate leaving group in dNTPs. Brønsted plot relationships with negative slopes are revealed by the data, as was found for the dGTP and dTTP analogues, consistent with a bond-breaking component to the TS energy. However, greater multiplicity was shown in the linear free energy relationship, revealing an unexpected dependence on the nucleotide base for both A and C. Strong base-dependent perturbations that modulate TS relative to ground-state energies are likely to arise from electrostatic effects on catalysis in the pol active site. Deviations from a uniform linear Brønsted plot relationship are discussed in terms of insights gained from structural features of the prechemistry DNA polymerase active site.


Subject(s)
DNA Polymerase beta/chemistry , DNA/biosynthesis , Catalysis , Catalytic Domain , DNA/chemistry , Humans , Kinetics
3.
Biochemistry ; 57(26): 3934-3944, 2018 07 03.
Article in English | MEDLINE | ID: mdl-29874056

ABSTRACT

We report high-resolution crystal structures of DNA polymerase (pol) ß in ternary complex with a panel of incoming dNTPs carrying acidity-modified 5'-triphosphate groups. These novel dNTP analogues have a variety of halomethylene substitutions replacing the bridging oxygen between Pß and Pγ of the incoming dNTP, whereas other analogues have alkaline substitutions at the bridging oxygen. Use of these analogues allows the first systematic comparison of effects of 5'-triphosphate acidity modification on active site structures and the rate constant of DNA synthesis. These ternary complex structures with incoming dATP, dTTP, and dCTP analogues reveal the enzyme's active site is not grossly altered by the acidity modifications of the triphosphate group, yet with analogues of all three incoming dNTP bases, subtle structural differences are apparent in interactions around the nascent base pair and at the guanidinium groups of active site arginine residues. These results are important for understanding how acidity modification of the incoming dNTP's 5'-triphosphate can influence DNA polymerase activity and the significance of interactions at arginines 183 and 149 in the active site.


Subject(s)
DNA Polymerase beta/chemistry , Deoxyribonucleotides/chemistry , Catalytic Domain , Humans , Structure-Activity Relationship
4.
Proc Natl Acad Sci U S A ; 113(16): E2277-85, 2016 Apr 19.
Article in English | MEDLINE | ID: mdl-27044101

ABSTRACT

What is the free energy source enabling high-fidelity DNA polymerases (pols) to favor incorporation of correct over incorrect base pairs by 10(3)- to 10(4)-fold, corresponding to free energy differences of ΔΔGinc∼ 5.5-7 kcal/mol? Standard ΔΔG° values (∼0.3 kcal/mol) calculated from melting temperature measurements comparing matched vs. mismatched base pairs at duplex DNA termini are far too low to explain pol accuracy. Earlier analyses suggested that pol active-site steric constraints can amplify DNA free energy differences at the transition state (kinetic selection). A recent paper [Olson et al. (2013)J Am Chem Soc135:1205-1208] used Vent pol to catalyze incorporations in the presence of inorganic pyrophosphate intended to equilibrate forward (polymerization) and backward (pyrophosphorolysis) reactions. A steady-state leveling off of incorporation profiles at long reaction times was interpreted as reaching equilibrium between polymerization and pyrophosphorolysis, yielding apparent ΔG° = -RTlnKeq, indicating ΔΔG° of 3.5-7 kcal/mol, sufficient to account for pol accuracy without need of kinetic selection. Here we perform experiments to measure and account for pyrophosphorolysis explicitly. We show that forward and reverse reactions attain steady states far from equilibrium for wrong incorporations such as G opposite T. Therefore,[Formula: see text]values obtained from such steady-state evaluations ofKeqare not dependent on DNA properties alone, but depend largely on constraints imposed on right and wrong substrates in the polymerase active site.


Subject(s)
Base Pairing , DNA-Directed DNA Polymerase/chemistry , DNA/chemistry , Models, Chemical , Thermodynamics , Kinetics
5.
Org Lett ; 17(11): 2586-9, 2015 Jun 05.
Article in English | MEDLINE | ID: mdl-25970636

ABSTRACT

Novel α,ß-CH2 and ß,γ-NH (1a) or α,ß-NH and ß,γ-CH2 (1b) "Met-Im" dTTPs were synthesized via monodemethylation of triethyl-dimethyl phosphorimido-bisphosphonate synthons (4a, 4b), formed via a base-induced [1,3]-rearrangement of precursors (3a, 3b) in a reaction with dimethyl or diethyl phosphochloridate. Anomerization during final bromotrimethylsilane (BTMS) deprotection after Mitsunobu conjugation with dT was avoided by microwave conditions. 1a was 9-fold more potent in inhibiting DNA polymerase ß, attributed to an NH-group interaction with R183 in the active site.


Subject(s)
Thymine Nucleotides/chemical synthesis , Models, Molecular , Molecular Structure , Thymine Nucleotides/chemistry
6.
Biochemistry ; 53(11): 1842-8, 2014 Mar 25.
Article in English | MEDLINE | ID: mdl-24580380

ABSTRACT

Kinetics studies of dNTP analogues having pyrophosphate-mimicking ß,γ-pCXYp leaving groups with variable X and Y substitution reveal striking differences in the chemical transition-state energy for DNA polymerase ß that depend on all aspects of base-pairing configurations, including whether the incoming dNTP is a purine or pyrimidine and if base-pairings are right (T•A and G•C) or wrong (T•G and G•T). Brønsted plots of the catalytic rate constant (log(kpol)) versus pKa4 for the leaving group exhibit linear free energy relationships (LFERs) with negative slopes ranging from -0.6 to -2.0, consistent with chemical rate-determining transition-states in which the active-site adjusts to charge-stabilization demand during chemistry depending on base-pair configuration. The Brønsted slopes as well as the intercepts differ dramatically and provide the first direct evidence that dNTP base recognition by the enzyme-primer-template complex triggers a conformational change in the catalytic region of the active-site that significantly modifies the rate-determining chemical step.


Subject(s)
DNA Polymerase beta/chemistry , DNA Polymerase beta/metabolism , Base Pairing/genetics , Catalysis , DNA Damage/genetics , DNA Polymerase beta/genetics , Enzyme Stability , Hydrogen Bonding , Protein Conformation
7.
J Fluor Chem ; 167: 226-230, 2014 Oct.
Article in English | MEDLINE | ID: mdl-26279588

ABSTRACT

Analogs of ribonucleotides (RNA) stable to enzymatic hydrolysis were prepared and characterized. Computational investigations revealed that this class of compounds with a modified triphosphate exhibits the correct polarity and minimal steric effects compared to the natural molecule. Non-hydrolysable properties as well as the ability of the modified nucleotide to be recognized by enzymes were probed by performing single-turnover gap filling assays with T7 RNA polymerase and DNA polymerase ß.

8.
Biochemistry ; 51(43): 8491-501, 2012 Oct 30.
Article in English | MEDLINE | ID: mdl-23043620

ABSTRACT

Recently, we synthesized the first individual ß,γ-CHX-dGTP diastereomers [(R)- or (S)-CHX, where X is F or Cl] and determined their structures in ternary complexes with DNA polymerase ß (pol ß). We now report stereospecificity by pol ß on the mixed ß,γ-CHX diastereomer pairs using nuclear magnetic resonance and on the separate diastereomers using transient kinetics. For both the F and Cl diastereomers, the R isomer is favored over the S isomer for G·C correct incorporation, with stereospecificities [(k(pol)/K(d))(R)/(k(pol)/K(d))(S)] of 3.8 and 6.3, respectively, and also for G·T misincorporation, with stereospecificities of 11 and 7.8, respectively. Stereopreference for the (R)-CHF-dGTP diastereomer was abolished for k(pol) but not K(d) with mutant pol ß (R183A). These compounds constitute a new class of stereochemical probes for active site interactions involving halogen atoms. As Arg183 is unique in family X pols, the design of CXY deoxyribonucleotide analogues to enhance interaction is a possible strategy for inhibiting BER selectively in cancer cells.


Subject(s)
DNA Polymerase beta/metabolism , Deoxyguanine Nucleotides/chemistry , Deoxyguanine Nucleotides/pharmacology , Halogens/chemistry , Halogens/pharmacology , Catalytic Domain/drug effects , DNA/metabolism , DNA Polymerase beta/chemistry , DNA Polymerase beta/genetics , Humans , Kinetics , Nuclear Magnetic Resonance, Biomolecular , Point Mutation , Stereoisomerism , Substrate Specificity
9.
Proc Natl Acad Sci U S A ; 107(36): 15693-8, 2010 Sep 07.
Article in English | MEDLINE | ID: mdl-20724659

ABSTRACT

It is difficult to overestimate the importance of nucleoside triphosphates in cellular chemistry: They are the building blocks for DNA and RNA and important sources of energy. Modifications of biologically important organic molecules with fluorine are of great interest to chemists and biologists because the size and electronegativity of the fluorine atom can be used to make defined structural alterations to biologically important molecules. Although the concept of nonhydrolyzable nucleotides has been around for some time, the progress in the area of modified triphosphates was limited by the lack of synthetic methods allowing to access bisCF(2)-substituted nucleotide analogs-one of the most interesting classes of nonhydrolyzable nucleotides. These compounds have "correct" polarity and the smallest possible steric perturbation compared to natural nucleotides. No other known nucleotides have these advantages, making bisCF(2)-substituted analogs unique. Herein, we report a concise route for the preparation of hitherto unknown highly acidic and polybasic bis(difluoromethylene)triphosphoric acid 1 using a phosphorous(III)/phosphorous(V) interconversion approach. The analog 1 compared to triphosphoric acid is enzymatically nonhydrolyzable due to substitution of two bridging oxygen atoms with CF(2) groups, maintaining minimal perturbations in steric bulkiness and overall polarity of the triphosphate polyanion. The fluorinated triphosphoric acid 1 was used for the preparation of the corresponding fluorinated deoxynucleotides (dNTPs). One of these dNTP analogs (dT) was demonstrated to fit into DNA polymerase beta (DNA pol beta) binding pocket by obtaining a 2.5 A resolution crystal structure of a ternary complex with the enzyme. Unexpected dominating effect of triphosphate/Mg(2+) interaction over Watson-Crick hydrogen bonding was found and discussed.


Subject(s)
DNA/chemistry , Fluorine/chemistry , Organophosphonates/chemistry , RNA/chemistry , Crystallography, X-Ray , DNA/chemical synthesis , DNA/pharmacology , Hydrogen Bonding , Models, Molecular , Nuclear Magnetic Resonance, Biomolecular , RNA/chemical synthesis , RNA/pharmacology
10.
Biochemistry ; 49(1): 20-8, 2010 Jan 12.
Article in English | MEDLINE | ID: mdl-20000359

ABSTRACT

DNA polymerase fidelity is defined as the ratio of right (R) to wrong (W) nucleotide incorporations when dRTP and dWTP substrates compete at equal concentrations for primer extension at the same site in the polymerase-primer-template DNA complex. Typically, R incorporation is favored over W by 10(3)-10(5)-fold, even in the absence of 3'-exonuclease proofreading. Straightforward in principle, a direct competition fidelity measurement is difficult to perform in practice because detection of a small amount of W is masked by a large amount of R. As an alternative, enzyme kinetics measurements to evaluate k(cat)/K(m) for R and W in separate reactions are widely used to measure polymerase fidelity indirectly, based on a steady state derivation by Fersht. A systematic comparison between direct competition and kinetics has not been made until now. By separating R and W products using electrophoresis, we have successfully taken accurate fidelity measurements for directly competing R and W dNTP substrates for 9 of the 12 natural base mispairs. We compare our direct competition results with steady state and pre-steady state kinetic measurements of fidelity at the same template site, using the proofreading-deficient mutant of Klenow fragment (KF(-)) DNA polymerase. All the data are in quantitative agreement.


Subject(s)
DNA-Directed DNA Polymerase/chemistry , DNA-Directed DNA Polymerase/metabolism , Deoxyribonucleotides/chemistry , Binding Sites , DNA Polymerase I/genetics , DNA Polymerase I/metabolism , DNA Primers/chemistry , DNA Primers/metabolism , Deoxyribonucleotides/metabolism , Kinetics , Mutation , Substrate Specificity , Thermodynamics
11.
Biochemistry ; 47(3): 870-9, 2008 Jan 22.
Article in English | MEDLINE | ID: mdl-18161950

ABSTRACT

The mechanism of DNA polymerase beta-catalyzed nucleotidyl transfer consists of chemical steps involving primer 3' OH deprotonation, nucleophilic attack, and pyrophosphate leaving-group elimination, preceded by dNTP binding which induces a large-amplitude conformational change for Watson-Crick nascent base pairs. Ambiguity in the nature of the rate-limiting step and active-site structural differences between correct and incorrect base-paired transition states remain obstacles to understanding DNA replication fidelity. Analogues of dGTP where the beta-gamma bridging oxygen is replaced with fluorine-substituted methylene groups have been shown to probe the contribution of leaving-group elimination to the overall catalytic rate (Biochemistry 46, 461-471). Here, the analysis is expanded substantially to include a broad range of halogen substituents with disparate steric and electronic properties. Evaluation of linear free energy relationships for incorporation of dGTP analogues opposite either template base C or T reveals a strong correlation of log(kpol) to leaving group pKa. Significantly different kpol behavior is observed with a subset of the analogues, with magnitude dependent on the identity of the nascent base pair. This observation, and the absence of an analogous effect on ground state analogue binding (Kd values), points to active-site structural differences at the chemical transition state. Reduced catalysis with bulky halo-containing substrates is manifested in the fidelity of T-G incorporation, where the CCl2-bridging analogue shows a 27-fold increase in fidelity over the natural dGTP. Solvent pH and deuterium isotope-effect data are also used to evaluate mechanistic differences between correct and mispaired incorporation.


Subject(s)
Base Pair Mismatch , DNA Polymerase beta/chemistry , Catalysis , Catalytic Domain , DNA/chemistry , DNA Polymerase beta/genetics , DNA Polymerase beta/metabolism , Deoxyguanine Nucleotides/chemistry , Deuterium Oxide/chemistry , Diphosphonates/chemistry , Guanosine Triphosphate/analogs & derivatives , Halogens/chemistry , Humans , Hydrogen-Ion Concentration , Kinetics , Models, Chemical , Models, Molecular , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Substrate Specificity , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...