Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Heart Fail ; 26(4): 829-840, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38623713

ABSTRACT

AIMS: Prediction and early detection of heart failure (HF) is crucial to mitigate its impact on quality of life, survival, and healthcare expenditure. Here, we explored the predictive value of serum metabolomics (168 metabolites detected by proton nuclear magnetic resonance [1H-NMR] spectroscopy) for incident HF. METHODS AND RESULTS: Leveraging data of 68 311 individuals and >0.8 million person-years of follow-up from the UK Biobank cohort, we (i) fitted per-metabolite Cox proportional hazards models to assess individual metabolite associations, and (ii) trained and validated elastic net models to predict incident HF using the serum metabolome. We benchmarked discriminative performance against a comprehensive, well-validated clinical risk score (Pooled Cohort Equations to Prevent HF [PCP-HF]). During a median follow-up of ≈12.3 years, several metabolites showed independent association with incident HF (90/168 adjusting for age and sex, 48/168 adjusting for PCP-HF). Performance-optimized risk models effectively retained key predictors representing highly correlated clusters (≈80% feature reduction). Adding metabolomics to PCP-HF improved predictive performance (Harrel's C: 0.768 vs. 0.755, ΔC = 0.013, [95% confidence interval [CI] 0.004-0.022], continuous net reclassification improvement [NRI]: 0.287 [95% CI 0.200-0.367], relative integrated discrimination improvement [IDI]: 17.47% [95% CI 9.463-27.825]). Models including age, sex and metabolomics performed almost as well as PCP-HF (Harrel's C: 0.745 vs. 0.755, ΔC = 0.010 [95% CI -0.004 to 0.027], continuous NRI: 0.097 [95% CI -0.025 to 0.217], relative IDI: 13.445% [95% CI -10.608 to 41.454]). Risk and survival stratification was improved by integrating metabolomics. CONCLUSION: Serum metabolomics improves incident HF risk prediction over PCP-HF. Scores based on age, sex and metabolomics exhibit similar predictive power to clinically-based models, potentially offering a cost-effective, standardizable, and scalable single-domain alternative.


Subject(s)
Heart Failure , Metabolomics , Humans , Heart Failure/blood , Heart Failure/epidemiology , Female , Male , Metabolomics/methods , Risk Assessment/methods , Middle Aged , Incidence , Aged , Biomarkers/blood , United Kingdom/epidemiology , Follow-Up Studies , Predictive Value of Tests
2.
Antioxid Redox Signal ; 38(4-6): 371-387, 2023 02.
Article in English | MEDLINE | ID: mdl-36656669

ABSTRACT

Significance: Reactive oxygen species (ROS) play a key role in the pathogenesis of cardiac remodeling and the subsequent progression to heart failure (HF). Nicotinamide adenosine dinucleotide phosphate (NADPH) oxidases (NOXs) are one of the major sources of ROS and are expressed in different heart cell types, including cardiomyocytes, endothelial cells, fibroblasts, and inflammatory cells. Recent Advances: NOX-derived ROS are usually produced in a regulated and spatially confined fashion and typically linked to specific signaling. The two main cardiac isoforms, namely nicotinamide adenine dinucleotide phosphate oxidase isoform 2 (NOX2) and nicotinamide adenine dinucleotide phosphate oxidase isoform 4 (NOX4), possess different biochemical and (patho)physiological properties and exert distinct effects on the cardiac phenotype in many settings. Recent work has defined important cell-specific effects of NOX2 that contribute to pathological cardiac remodeling and dysfunction. NOX4, on the other hand, may exert protective effects by stimulating adaptive stress responses, with recent data showing that NOX4-mediated signaling regulates transcription and metabolism in the heart. Critical Issues: The inhibition of NOX2 appears to be a very promising therapeutic target to ameliorate pathological cardiac remodeling. If the beneficial effects of NOX4 can be enhanced, this might be a unique approach to boosting adaptive responses and thereby impact cell survival, activation, contractility, and growth. Future Directions: Increasing knowledge regarding the intricacies of NOX-mediated signaling may yield tractable therapeutic targets, in contrast to the non-specific targeting of oxidative stress. Antioxid. Redox Signal. 38, 371-387.


Subject(s)
Adenine Nucleotides , NADPH Oxidases , Humans , Reactive Oxygen Species/metabolism , NADPH Oxidases/metabolism , Adenine Nucleotides/metabolism , NADP/metabolism , Niacinamide , Oxidoreductases/metabolism , Ventricular Remodeling , Endothelial Cells/metabolism , Oxidative Stress/genetics , NADPH Oxidase 4/metabolism , Protein Isoforms/metabolism , Phosphates , Adenosine/metabolism
3.
FEBS J ; 289(18): 5440-5462, 2022 09.
Article in English | MEDLINE | ID: mdl-34496138

ABSTRACT

Reactive oxygen species (ROS) are not just a by-product of cellular metabolic processes but act as signalling molecules that regulate both physiological and pathophysiological processes. A close connection exists in cells between redox homeostasis and cellular metabolism. In this review, we describe how intracellular redox state and glycolytic intermediary metabolism are closely coupled. On the one hand, ROS signalling can control glycolytic intermediary metabolism by direct regulation of the activity of key metabolic enzymes and indirect regulation via redox-sensitive transcription factors. On the other hand, metabolic adaptation and reprogramming in response to physiological or pathological stimuli regulate intracellular redox balance, through mechanisms such as the generation of reducing equivalents. We also discuss the impact of these intermediary metabolism-redox circuits in physiological and disease settings across different tissues. A better understanding of the mechanisms regulating these intermediary metabolism-redox circuits will be crucial to the development of novel therapeutic strategies.


Subject(s)
Oxidative Stress , Signal Transduction , Oxidation-Reduction , Reactive Oxygen Species/metabolism , Signal Transduction/physiology , Transcription Factors/metabolism
5.
Invest Ophthalmol Vis Sci ; 61(12): 14, 2020 10 01.
Article in English | MEDLINE | ID: mdl-33057669

ABSTRACT

Purpose: The purpose of this study was to gain insights on the pathogenesis of chronic progressive external ophthalmoplegia, thus we investigated the vulnerability of five extra ocular muscles (EOMs) fiber types to pathogenic mitochondrial DNA deletions in a mouse model expressing a mutated mitochondrial helicase TWINKLE. Methods: Consecutive pairs of EOM sections were analyzed by cytochrome C oxidase (COX)/succinate dehydrogenase (SDH) assay and fiber type specific immunohistochemistry (type I, IIA, IIB, embryonic, and EOM-specific staining). Results: The mean average of COX deficient fibers (COX-) in the recti muscles of mutant mice was 1.04 ± 0.52% at 12 months and increased with age (7.01 ± 1.53% at 24 months). A significant proportion of these COX- fibers were of the fast-twitch, glycolytic type IIB (> 50% and > 35% total COX- fibers at 12 and 24 months, respectively), whereas embryonic myosin heavy chain-expressing fibers were almost completely spared. Furthermore, the proportion of COX- fibers in the type IIB-rich retractor bulbi muscle was > 2-fold higher compared to the M. recti at both 12 (2.6 ± 0.78%) and 24 months (20.85 ± 2.69%). Collectively, these results demonstrate a selective vulnerability of type IIB fibers to mitochondrial DNA (mtDNA) deletions in EOMs and retractor bulbi muscle. We also show that EOMs of mutant mice display histopathological abnormalities, including altered fiber type composition, increased fibrosis, ragged red fibers, and infiltration of mononucleated nonmuscle cells. Conclusions: Our results point to the existence of fiber type IIB-intrinsic factors and/or molecular mechanisms that predispose them to increased generation, clonal expansion, and detrimental effects of mtDNA deletions.


Subject(s)
DNA, Mitochondrial/genetics , Mitochondria, Muscle/pathology , Mitochondrial Diseases/pathology , Muscle Fibers, Fast-Twitch/pathology , Oculomotor Muscles/pathology , Animals , Electron Transport Complex IV/metabolism , Immunohistochemistry , Mice , Mice, Inbred C57BL , Mice, Transgenic , Mitochondria, Muscle/enzymology , Mitochondrial Diseases/enzymology , Mitochondrial Diseases/genetics , Muscle Fibers, Fast-Twitch/enzymology , Muscle Fibers, Skeletal/enzymology , Muscle Fibers, Skeletal/pathology , Myosin Heavy Chains/metabolism , Oculomotor Muscles/enzymology , Ophthalmoplegia, Chronic Progressive External/etiology , Real-Time Polymerase Chain Reaction , Succinate Dehydrogenase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...