Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Mater ; 22(2): 186-193, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36329264

ABSTRACT

In the kagome metals AV3Sb5 (A = K, Rb, Cs), three-dimensional charge order is the primary instability that sets the stage for other collective orders to emerge, including unidirectional stripe order, orbital flux order, electronic nematicity and superconductivity. Here, we use high-resolution angle-resolved photoemission spectroscopy to determine the microscopic structure of three-dimensional charge order in AV3Sb5 and its interplay with superconductivity. Our approach is based on identifying an unusual splitting of kagome bands induced by three-dimensional charge order, which provides a sensitive way to refine the spatial charge patterns in neighbouring kagome planes. We found a marked dependence of the three-dimensional charge order structure on composition and doping. The observed difference between CsV3Sb5 and the other compounds potentially underpins the double-dome superconductivity in CsV3(Sb,Sn)5 and the suppression of Tc in KV3Sb5 and RbV3Sb5. Our results provide fresh insights into the rich phase diagram of AV3Sb5.

2.
Inorg Chem ; 60(12): 9224-9232, 2021 Jun 21.
Article in English | MEDLINE | ID: mdl-34097824

ABSTRACT

The properties of crystalline materials tend to be strongly correlated with their structures, and the prediction of crystal structure from only the composition is a coveted goal in the field of inorganic materials. However, even for the simplest compositions, such prediction relies on a complex network of interactions, including atomic or ionic radii, ionicity, electronegativity, position in the periodic table, and magnetism, to name only a few important parameters. We focus here on the AB2X6 (AB2O6 and AB2F6) composition space with the specific goal of finding new oxide compounds in the trirutile family, which is known for unusual one-dimensional (1D) antiferromagnetic behavior. Through machine learning methods, we develop an understanding of how geometric and bonding constraints determine the crystallization of compounds in the trirutile structure as opposed to other ternary structures in this space. In combination with density functional theory (DFT) calculations, we predict 16 previously unreported candidate trirutile oxides. We successfully prepare one of these and show it forms in the disordered rutile structure, under the preparation conditions adopted here.

SELECTION OF CITATIONS
SEARCH DETAIL
...