Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Clin Nutr ; 110(1): 63-75, 2019 07 01.
Article in English | MEDLINE | ID: mdl-31095300

ABSTRACT

BACKGROUND: Controlled glycemic concentrations are associated with a lower risk of conditions such as cardiovascular disease and diabetes. Models commonly used to guide interventions to control the glycemic response to food have low efficacy, with recent clinical guidelines arguing for the use of personalized approaches. OBJECTIVE: We tested the efficacy of a predictive model of personalized postprandial glycemic response to foods that was developed with an Israeli cohort and that takes into consideration food components and specific features, including the microbiome, when applied to individuals from the Midwestern US. DESIGN: We recruited 327 individuals for this study. Participants provided information regarding lifestyle, dietary habits, and health, as well as a stool sample for characterization of their gut microbiome. Participants were connected to continuous glucose monitors for 6 d, and the glycemic response to meals logged during this time was computed. The ability of a model trained using meals logged by the Israeli cohort to correctly predict glycemic responses in the Midwestern cohort was assessed and compared with that of a model trained using meals logged by both cohorts. RESULTS: When trained on the Israeli cohort meals only, model performance for predicting responses of individuals in the Midwestern cohort was better (R = 0.596) than that observed for models taking into consideration the carbohydrate (R = 0.395) or calorie content of the meals alone (R = 0.336). Performance increased (R = 0.618) when the model was trained on meals from both cohorts, likely because of the observed differences in age distribution, diet, and microbiome. CONCLUSIONS: We show that the modeling framework described in Zeevi et al. for an Israeli cohort is applicable to a Midwestern population, and outperforms commonly used approaches for the control of blood glucose responses. The adaptation of the model to the Midwestern cohort further enhances performance and is a promising means for designing effective nutritional interventions to control glycemic responses to foods. This trial was registered at clinicaltrials.gov as NCT02945514.


Subject(s)
Blood Glucose/analysis , Food , Meals , Postprandial Period , Cohort Studies , Diet , Dietary Carbohydrates/administration & dosage , Energy Intake , Glycemic Index , Humans , Israel , Microbiota , Models, Biological , Precision Medicine , United States
2.
JAMA Netw Open ; 2(2): e188102, 2019 02 01.
Article in English | MEDLINE | ID: mdl-30735238

ABSTRACT

Importance: Emerging evidence suggests that postprandial glycemic responses (PPGRs) to food may be influenced by and predicted according to characteristics unique to each individual, including anthropometric and microbiome variables. Interindividual diversity in PPGRs to food requires a personalized approach for the maintenance of healthy glycemic levels. Objectives: To describe and predict the glycemic responses of individuals to a diverse array of foods using a model that considers the physiology and microbiome of the individual in addition to the characteristics of the foods consumed. Design, Setting, and Participants: This cohort study using a personalized predictive model enrolled 327 individuals without diabetes from October 11, 2016, to December 13, 2017, in Minnesota and Florida to be part of a study lasting 6 days. The study measured anthropometric variables, described the gut microbial composition, and assessed blood glucose levels every 5 minutes using a continuous glucose monitor. Participants logged their food and activity information for the duration of the study. A predictive model of individualized PPGRs to a diverse array of foods was trained and applied. Main Outcomes and Measures: Glycemic responses to food consumed over 6 days for each participant. The predictive model of personalized PPGRs considered individual features, including the microbiome, in addition to the features of the foods consumed. Results: Postprandial response to the same foods varied across 327 individuals (mean [SD] age, 45 [12] years; 78.0% female). A model predicting each individual's responses to food that considers several individual factors in addition to food features had better overall performance (R = 0.62) than current standard-of-care approaches using nutritional content alone (R = 0.34 for calories and R = 0.40 for carbohydrates) to control postprandial glycemic levels. Conclusions and Relevance: Across the cohort of adults without diabetes who were examined, a personalized predictive model that considers unique features of the individual, such as clinical characteristics, physiological variables, and the microbiome, in addition to nutrient content was more predictive than current dietary approaches that focus only on the calorie or carbohydrate content of foods. Providing individuals with tools to manage their glycemic responses to food based on personalized predictions of their PPGRs may allow them to maintain their blood glucose levels within limits associated with good health.


Subject(s)
Blood Glucose/physiology , Diet/statistics & numerical data , Models, Statistical , Postprandial Period/physiology , Precision Medicine/methods , Adult , Blood Glucose/analysis , Cohort Studies , Female , Humans , Male , Middle Aged
3.
Exp Appl Acarol ; 62(4): 437-48, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24242868

ABSTRACT

In Israel Rhizoglyphus robini is considered to be a pest in its own right, even though the mite is usually found in association with fungal pathogens. Plant protection recommendations are therefore to treat germinating onions seedlings, clearly a crucial phase in crop production, when mites are discovered. The aim of this study was to determine the role of fungi in bulb mite infestation and damage to germinating onion seedlings. Accordingly we (1) evaluated the effect of the mite on onion seedling germination and survival without fungi, (2) compared the attraction of the mite to species and isolates of various fungi, (3) assessed the effect of a relatively non-pathogenic isolate of Fusarium oxysporum on mite fecundity, and (4) determined the effects of the mite and of F. oxysporum separately and together, on onion seedling germination and sprout development. A significant reduction of seedling survival was recorded only in the 1,000 mites/pot treatment, after 4 weeks. Mites were attracted to 6 out of 7 collected fungi isolates. Mite fecundity on onion sprouts infested with F. oxysporum was higher than on non-infested sprouts. Survival of seedlings was affected by mites, fungi, and their combination. Sprouts on Petri dishes after 5 days were significantly longer in the control and mite treatments than both fungi treatments. During the 5-day experiment more mites were always found on the fungi-infected sprouts than on the non-infected sprouts. Future research using suppressive soils to suppress soil pathogens and subsequent mite damage is proposed.


Subject(s)
Mites/physiology , Onions/microbiology , Animals , Ecosystem , Fertility , Fusarium/physiology , Germination , Host-Pathogen Interactions , Mites/microbiology , Onions/physiology , Seedlings/microbiology , Seedlings/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...