Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Pathog ; 17(1): e1009195, 2021 01.
Article in English | MEDLINE | ID: mdl-33465158

ABSTRACT

SARS-CoV-2 emerged in late 2019 and resulted in the ongoing COVID-19 pandemic. Several animal models have been rapidly developed that recapitulate the asymptomatic to moderate disease spectrum. Now, there is a direct need for additional small animal models to study the pathogenesis of severe COVID-19 and for fast-tracked medical countermeasure development. Here, we show that transgenic mice expressing the human SARS-CoV-2 receptor (angiotensin-converting enzyme 2 [hACE2]) under a cytokeratin 18 promoter (K18) are susceptible to SARS-CoV-2 and that infection resulted in a dose-dependent lethal disease course. After inoculation with either 104 TCID50 or 105 TCID50, the SARS-CoV-2 infection resulted in rapid weight loss in both groups and uniform lethality in the 105 TCID50 group. High levels of viral RNA shedding were observed from the upper and lower respiratory tract and intermittent shedding was observed from the intestinal tract. Inoculation with SARS-CoV-2 resulted in upper and lower respiratory tract infection with high infectious virus titers in nasal turbinates, trachea and lungs. The observed interstitial pneumonia and pulmonary pathology, with SARS-CoV-2 replication evident in pneumocytes, were similar to that reported in severe cases of COVID-19. SARS-CoV-2 infection resulted in macrophage and lymphocyte infiltration in the lungs and upregulation of Th1 and proinflammatory cytokines/chemokines. Extrapulmonary replication of SARS-CoV-2 was observed in the cerebral cortex and hippocampus of several animals at 7 DPI but not at 3 DPI. The rapid inflammatory response and observed pathology bears resemblance to COVID-19. Additionally, we demonstrate that a mild disease course can be simulated by low dose infection with 102 TCID50 SARS-CoV-2, resulting in minimal clinical manifestation and near uniform survival. Taken together, these data support future application of this model to studies of pathogenesis and medical countermeasure development.


Subject(s)
Angiotensin-Converting Enzyme 2/genetics , COVID-19/genetics , COVID-19/pathology , Keratin-18/genetics , Angiotensin-Converting Enzyme 2/immunology , Animals , COVID-19/immunology , COVID-19/virology , Disease Models, Animal , Female , Humans , Keratin-18/immunology , Lung/immunology , Lung/pathology , Lymphocytes/immunology , Macrophages/immunology , Male , Mice , Mice, Transgenic , Promoter Regions, Genetic , SARS-CoV-2/physiology , Trachea/immunology , Trachea/virology
2.
PLoS Negl Trop Dis ; 7(12): e2584, 2013.
Article in English | MEDLINE | ID: mdl-24340120

ABSTRACT

BACKGROUND: Lymphatic filariasis (LF) is targeted for global elimination through treatment of entire at-risk populations with repeated annual mass drug administration (MDA). Essential for program success is defining and confirming the appropriate endpoint for MDA when transmission is presumed to have reached a level low enough that it cannot be sustained even in the absence of drug intervention. Guidelines advanced by WHO call for a transmission assessment survey (TAS) to determine if MDA can be stopped within an LF evaluation unit (EU) after at least five effective rounds of annual treatment. To test the value and practicality of these guidelines, a multicenter operational research trial was undertaken in 11 countries covering various geographic and epidemiological settings. METHODOLOGY: The TAS was conducted twice in each EU with TAS-1 and TAS-2 approximately 24 months apart. Lot quality assurance sampling (LQAS) formed the basis of the TAS survey design but specific EU characteristics defined the survey site (school or community), eligible population (6-7 year olds or 1(st)-2(nd) graders), survey type (systematic or cluster-sampling), target sample size, and critical cutoff (a statistically powered threshold below which transmission is expected to be no longer sustainable). The primary diagnostic tools were the immunochromatographic (ICT) test for W. bancrofti EUs and the BmR1 test (Brugia Rapid or PanLF) for Brugia spp. EUs. PRINCIPAL FINDINGS/CONCLUSIONS: In 10 of 11 EUs, the number of TAS-1 positive cases was below the critical cutoff, indicating that MDA could be stopped. The same results were found in the follow-up TAS-2, therefore, confirming the previous decision outcome. Sample sizes were highly sex and age-representative and closely matched the target value after factoring in estimates of non-participation. The TAS was determined to be a practical and effective evaluation tool for stopping MDA although its validity for longer-term post-MDA surveillance requires further investigation.


Subject(s)
Disease Transmission, Infectious/prevention & control , Elephantiasis, Filarial/drug therapy , Elephantiasis, Filarial/transmission , Filaricides/therapeutic use , Animals , Brugia/isolation & purification , Child , Elephantiasis, Filarial/epidemiology , Elephantiasis, Filarial/prevention & control , Epidemiological Monitoring , Female , Humans , Male , Wolbachia/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...