Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 129
Filter
1.
Neurotherapeutics ; 21(2): e00335, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38368172

ABSTRACT

There is currently no disease-modifying therapy for Huntington's disease (HD). We recently described a small molecule, MK-28, which restored homeostasis in HD models by specifically activating PKR-like ER kinase (PERK). This activation boosts the unfolded protein response (UPR), thereby reducing endoplasmic reticulum (ER) stress, a central cytotoxic mechanism in HD and other neurodegenerative diseases. Here, we have tested the long-term effects of MK-28 in HD model mice. R6/2 CAG (160) mice were treated by lifetime intraperitoneal injections 3 times a week. CatWalk measurements of motor function showed strong improvement compared to untreated mice after only two weeks of MK-28 treatment and continued with time, most significantly at 1 â€‹mg/kg MK-28, approaching WT values. Seven weeks treatment significantly improved paw grip strength. Body weight recovered and glucose levels, which are elevated in HD mice, were significantly reduced. Treatment with another PERK activator, CCT020312 at 1 â€‹mg/kg, also caused amelioration, consistent with PERK activation. Lifespan, measured in more resilient R6/2 CAG (120) mice with daily IP injection, was much extended by 16 days (20%) with 0.3 â€‹mg/kg MK-28, and by 38 days (46%) with 1 â€‹mg/kg MK-28. No toxicity, measured by weight, blood glucose levels and blood liver function markers, was detectable in WT mice treated for 6 weeks with 6 â€‹mg/kg MK-28. Boosting of PERK activity by long-term treatment with MK-28 could be a safe and promising therapeutic approach for HD.


Subject(s)
Huntington Disease , Neurodegenerative Diseases , Mice , Animals , Huntington Disease/metabolism , Mice, Transgenic , Disease Models, Animal , Endoplasmic Reticulum Stress
2.
Brain ; 146(1): 209-224, 2023 01 05.
Article in English | MEDLINE | ID: mdl-35881523

ABSTRACT

Parkinson's disease is characterized by the gradual appearance of intraneuronal inclusions that are primarily composed of misfolded α-synuclein protein, leading to cytotoxicity and neural death. Recent in vitro and in vivo studies suggest that misfolded α-synuclein may spread transcellularly in a prion-like manner, inducing pathological aggregates in healthy neurons, and is disseminated via secretion of extracellular vesicles. Accordingly, extracellular vesicles derived from brain lysates and CSF of patients with Parkinson's disease were shown to facilitate α-synuclein aggregation in healthy cells. Prompted by the hypothesis of Braak and colleagues that the olfactory bulb is one of the primary propagation sites for the initiation of Parkinson's disease, we sought to investigate the role of extracellular vesicles in the spread of α-synuclein and progression of Parkinson's disease through the olfactory bulb. Extracellular vesicles derived from the CSF of patients diagnosed with Parkinson's disease or with a non-synucleinopathy neurodegenerative disorder were administered intranasally to healthy mice, once daily over 4 days. Three months later, mice were subjected to motor and non-motor tests. Functional impairments were elucidated by histochemical analysis of midbrain structures relevant to Parkinson's disease pathology, 8 months after EVs treatment. Mice treated with extracellular vesicles from the patients with Parkinson's disease displayed multiple symptoms consistent with prodromal and clinical-phase Parkinson's disease such as hyposmia, motor behaviour impairments and high anxiety levels. Furthermore, their midbrains showed widespread α-synuclein aggregations, dopaminergic neurodegeneration, neuroinflammation and altered autophagy activity. Several unconventional pathologies were also observed, such as α-synuclein aggregations in the red nucleus, growth of premature grey hair and astrogliosis. Collectively, these data indicate that intranasally administered extracellular vesicles derived from the CSF of patients with Parkinson's disease can propagate α-synuclein aggregation in vivo and trigger Parkinson's disease-like symptoms and pathology in healthy mice.


Subject(s)
Extracellular Vesicles , Parkinson Disease , Mice , Animals , Parkinson Disease/metabolism , alpha-Synuclein/metabolism , Neurons/metabolism , Brain/pathology , Extracellular Vesicles/metabolism
3.
Int J Mol Sci ; 23(19)2022 Sep 23.
Article in English | MEDLINE | ID: mdl-36232513

ABSTRACT

Mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) have been employed in the past decade as therapeutic agents in various diseases, including central nervous system (CNS) disorders. We currently aimed to use MSC-EVs as potential treatment for cerebral small vessel disease (CSVD), a complex disorder with a variety of manifestations. MSC-EVs were intranasally administrated to salt-sensitive hypertension prone SBH/y rats that were DOCA-salt loaded (SBH/y-DS), which we have previously shown is a model of CSVD. MSC-EVs accumulated within brain lesion sites of SBH/y-DS. An in vitro model of an inflammatory environment in the brain demonstrated anti-inflammatory properties of MSC-EVs. Following in vivo MSC-EV treatment, gene set enrichment analysis (GSEA) of SBH/y-DS cortices revealed downregulation of immune system response-related gene sets. In addition, MSC-EVs downregulated gene sets related to apoptosis, wound healing and coagulation, and upregulated gene sets associated with synaptic signaling and cognition. While no specific gene was markedly altered upon treatment, the synergistic effect of all gene alternations was sufficient to increase animal survival and improve the neurological state of affected SBH/y-DS rats. Our data suggest MSC-EVs act as microenvironment modulators, through various molecular pathways. We conclude that MSC-EVs may serve as beneficial therapeutic measure for multifactorial disorders, such as CSVD.


Subject(s)
Cerebral Small Vessel Diseases , Desoxycorticosterone Acetate , Extracellular Vesicles , Mesenchymal Stem Cells , Animals , Anti-Inflammatory Agents/metabolism , Cerebral Small Vessel Diseases/metabolism , Cerebral Small Vessel Diseases/therapy , Disease Models, Animal , Extracellular Vesicles/metabolism , Mesenchymal Stem Cells/metabolism , Rats
4.
Adv Drug Deliv Rev ; 190: 114535, 2022 11.
Article in English | MEDLINE | ID: mdl-36210573

ABSTRACT

Tissue-specific uptake and sufficient biodistribution are central goals in drug development. Crossing the blood-brain barrier (BBB) represents a major challenge in delivering therapeutics to the central nervous system (CNS). Since its discovery in the late 19th century, considerable efforts have been invested in an attempt to decipher the BBB structure complexity and plasticity. In parallel, another prevalent approach is to improve a delivery system by harnessing the biological machinery in an attempt to enhance therapeutic-agent permeability. Here, we review the advantages and limitations of using extracellular vesicles over AAV systems as a delivery system for therapy, focusing on neurodevelopmental disorders.


Subject(s)
Dependovirus , Extracellular Vesicles , Blood-Brain Barrier , Drug Delivery Systems , Humans , Precision Medicine , Tissue Distribution
5.
Int J Mol Sci ; 23(11)2022 May 25.
Article in English | MEDLINE | ID: mdl-35682594

ABSTRACT

Cerebral small vessel disease (CSVD) is the second most common cause of stroke and a major contributor to dementia. Manifestations of CSVD include cerebral microbleeds, intracerebral hemorrhages (ICH), lacunar infarcts, white matter hyperintensities (WMH) and enlarged perivascular spaces. Chronic hypertensive models have been found to reproduce most key features of the disease. Nevertheless, no animal models have been identified to reflect all different aspects of the human disease. Here, we described a novel model for CSVD using salt-sensitive 'Sabra' hypertension-prone rats (SBH/y), which display chronic hypertension and enhanced peripheral oxidative stress. SBH/y rats were either administered deoxycorticosteroid acetate (DOCA) (referred to as SBH/y-DOCA rats) or sham-operated and provided with 1% NaCl in drinking water. Rats underwent neurological assessment and behavioral testing, followed by ex vivo MRI and biochemical and histological analyses. SBH/y-DOCA rats show a neurological decline and cognitive impairment and present multiple cerebrovascular pathologies associated with CSVD, such as ICH, lacunes, enlarged perivascular spaces, blood vessel stenosis, BBB permeability and inflammation. Remarkably, SBH/y-DOCA rats show severe white matter pathology as well as WMH, which are rarely reported in commonly used models. Our model may serve as a novel platform for further understanding the mechanisms underlying CSVD and for testing novel therapeutics.


Subject(s)
Cerebral Small Vessel Diseases , Desoxycorticosterone Acetate , Hypertension , White Matter , Animals , Cerebral Hemorrhage/complications , Cerebral Small Vessel Diseases/complications , Hypertension/complications , Magnetic Resonance Imaging , Oxidative Stress , Rats , Rodentia
6.
Comput Struct Biotechnol J ; 20: 2013-2019, 2022.
Article in English | MEDLINE | ID: mdl-35521548

ABSTRACT

The CRISPR-Cas system has transformed the field of gene-editing and created opportunities for novel genome engineering therapeutics. The field has significantly progressed, and recently, CRISPR-Cas9 was utilized in clinical trials to target disease-causing mutations. Existing tools aim to predict the on-target efficacy and potential genome-wide off-targets by scoring a particular gRNA according to an array of gRNA design principles or machine learning algorithms based on empirical results of large numbers of gRNAs. However, such tools are unable to predict the editing outcome by variant Cas enzymes and can only assess potential off-targets related to reference genomes. Here, we employ normal mode analysis (NMA) to investigate the structure of the Cas9 protein complexed with its gRNA and target DNA and explore the function of the protein. Our results demonstrate the feasibility and validity of NMA to predict the activity and specificity of SpyCas9 in the presence of mismatches by comparison to empirical data. Furthermore, despite the absence of their exact structures, this method accurately predicts the enzymatic activity of known high-fidelity engineered Cas9 variants.

7.
Transl Psychiatry ; 11(1): 524, 2021 10 13.
Article in English | MEDLINE | ID: mdl-34645786

ABSTRACT

Autism spectrum disorder (ASD) is a neurodevelopmental disease with a wide spectrum of manifestation. The core symptoms of ASD are persistent deficits in social communication, and restricted and repetitive patterns of behavior, interests, or activities. These are often accompanied by intellectual disabilities. At present, there is no designated effective treatment for the core symptoms and co-morbidities of ASD. Recently, interest is rising in medical cannabis as a treatment for ASD, with promising clinical data. However, there is a notable absence of basic pre-clinical research in this field. In this study, we investigate the behavioral and biochemical effects of long-term oral treatment with CBD-enriched medical cannabis oil in a human mutation-based Shank3 mouse model of ASD. Our findings show that this treatment alleviates anxiety and decreases repetitive grooming behavior by over 70% in treated mutant mice compared to non-treated mutant mice. Furthermore, we were able to uncover the involvement of CB1 receptor (CB1R) signaling in the Avidekel oil mechanism, alongside a mitigation of cerebrospinal fluid (CSF) glutamate concentrations. Subsequently, RNA sequencing (RNA seq) of cerebellar brain samples revealed changes in mRNA expression of several neurotransmission-related genes post-treatment. Finally, our results question the relevancy of CBD enrichment of medical cannabis for treating the core symptoms of ASD, and emphasize the importance of the THC component for alleviating deficits in repetitive and social behaviors in ASD.


Subject(s)
Autism Spectrum Disorder , Cannabis , Medical Marijuana , Animals , Autism Spectrum Disorder/drug therapy , Disease Models, Animal , Mice , Microfilament Proteins , Nerve Tissue Proteins , Social Behavior
8.
Stem Cells ; 39(12): 1589-1600, 2021 12.
Article in English | MEDLINE | ID: mdl-34520591

ABSTRACT

Neurological disorders are diseases of the central nervous system (CNS), characterized by a progressive degeneration of cells and deficiencies in neural functions. Mesenchymal stem cells (MSCs) are a promising therapy for diseases and disorders of the CNS. Increasing evidence suggests that their beneficial abilities can be attributed to their paracrine secretion of extracellular vesicles (EVs). Administration of EVs that contain a mixture of proteins, lipids, and nucleic acids, resembling the secretome of MSCs, has been shown to mimic most of the effects of the parental cells. Moreover, the small size and safety profile of EVs provide a number of advantages over cell transplantation. Intranasal (IN) administration of EVs has been established as an effective and reliable way to bypass the blood-brain barrier and deliver drugs to the CNS. In addition to pharmacological drugs, EVs can be loaded with a diverse range of cargo designed to modulate gene expression and protein functions in recipient cells, and lead to immunomodulation, neurogenesis, neuroprotection, and degradation of protein aggregates. In this review, we will explore the proposed physiological pathways by which EVs migrate through the nasal route to the CNS where they can actively target a region of injury or inflammation and exert their therapeutic effects. We will summarize the functional outcomes observed in animal models of neurological diseases following IN treatment with MSC-derived EVs. We will also examine key mechanisms that have been suggested to mediate the beneficial effects of EV-based therapy.


Subject(s)
Extracellular Vesicles , Mesenchymal Stem Cells , Nervous System Diseases , Animals , Extracellular Vesicles/metabolism , Immunomodulation , Inflammation/metabolism , Mesenchymal Stem Cells/metabolism , Nervous System Diseases/metabolism , Nervous System Diseases/therapy
9.
Mol Ther ; 29(3): 937-948, 2021 03 03.
Article in English | MEDLINE | ID: mdl-33248248

ABSTRACT

The CRISPR-Cas system holds great promise in the treatment of diseases caused by genetic variations. The Cas protein, an RNA-guided programmable nuclease, generates a double-strand break at precise genomic loci. However, the use of the clustered regularly interspersed short palindromic repeats (CRISPR)-Cas system to distinguish between single-nucleotide variations is challenging. The promiscuity of the guide RNA (gRNA) and its mismatch tolerance make allele-specific targeting an elusive goal. This review presents a meta-analysis of previous studies reporting position-dependent mismatch tolerance within the gRNA. We also examine the conservativity of the seed sequence, a region within the gRNA with stringent sequence dependency, and propose the existence of a subregion within the seed sequence with a higher degree of specificity. In addition, we summarize the reports on high-fidelity Cas nucleases with improved specificity and compare the standard gRNA design methodology to the single-nucleotide polymorphism (SNP)-derived protospacer adjacent motif (PAM) approach, an alternative method for allele-specific targeting. The combination of the two methods may be advantageous in designing CRISPR-based therapeutics and diagnostics for heterozygous patients.


Subject(s)
CRISPR-Cas Systems , Endonucleases/metabolism , Gene Editing , Genome, Human , Polymorphism, Single Nucleotide , Genomics , Humans
10.
Front Genet ; 11: 851, 2020.
Article in English | MEDLINE | ID: mdl-33014011

ABSTRACT

Clustered regularly interspaced short palindromic repeats (CRISPR) is a promising novel technology that holds the potential of treating genetic diseases. Safety and specificity of the treatment are to be further studied and developed prior to implementation of the technology into the clinic. The guide-RNA (gRNA) allows precise position-specific DNA targeting, although it may tolerate small changes such as point mutations. The permissive nature of the CRISPR-Cas system makes allele-specific targeting a challenging goal. Hence, an allele-specific targeting approach is in need for future treatments of heterozygous patients suffering from diseases caused by dominant negative mutations. The single-nucleotide polymorphism (SNP)-derived protospacer adjacent motif (PAM) approach allows highly allele-specific DNA cleavage due to the existence of a novel PAM sequence only at the target allele. Here, we present CrisPam, a computational tool that detects PAMs within the variant allele for allele-specific targeting by CRISPR-Cas systems. The algorithm scans the sequences and attempts to identify the generation of multiple PAMs for a given reference sequence and its variations. A successful result is such that at least a single PAM is generated by the variation nucleotide. Since the PAM is present within the variant allele only, the Cas enzyme will bind the variant allele exclusively. Analyzing a dataset of human pathogenic point mutations revealed that 90% of the analyzed mutations generated at least a single PAM. Thus, the SNP-derived PAM approach is ideal for targeting most of the point mutations in an allele-specific manner. CrisPam simplifies the gRNAs design process to specifically target the allele of interest and scans a wide range of 26 unique PAMs derived from 23 Cas enzymes. CrisPam is freely available at https://www.danioffenlab.com/crispam.

11.
Nat Commun ; 11(1): 5236, 2020 10 16.
Article in English | MEDLINE | ID: mdl-33067431

ABSTRACT

The etiology of major neurodevelopmental disorders such as schizophrenia and autism is unclear, with evidence supporting a combination of genetic factors and environmental insults, including viral infection during pregnancy. Here we utilized a mouse model of maternal immune activation (MIA) with the viral mimic PolyI:C infection during early gestation. We investigated the transcriptional changes in the brains of mouse fetuses following MIA during the prenatal period, and evaluated the behavioral and biochemical changes in the adult brain. The results reveal an increase in RNA editing levels and dysregulation in brain development-related gene pathways in the fetal brains of MIA mice. These MIA-induced brain editing changes are not observed in adulthood, although MIA-induced behavioral deficits are observed. Taken together, our findings suggest that MIA induces transient dysregulation of RNA editing at a critical time in brain development.


Subject(s)
Neurodevelopmental Disorders/etiology , Neurodevelopmental Disorders/genetics , Pregnancy Complications/immunology , Pregnancy/immunology , Prenatal Exposure Delayed Effects/genetics , RNA Editing , Animals , Behavior, Animal , Brain/growth & development , Brain/immunology , Brain/metabolism , Disease Models, Animal , Female , Immunity, Maternally-Acquired , Mice , Mice, Inbred C57BL , Neurodevelopmental Disorders/immunology , Neurodevelopmental Disorders/psychology , Poly I-C/adverse effects , Poly I-C/immunology , Pregnancy Complications/etiology , Pregnancy Complications/genetics , Prenatal Exposure Delayed Effects/immunology , Prenatal Exposure Delayed Effects/psychology
12.
Transl Psychiatry ; 10(1): 305, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32873780

ABSTRACT

Schizophrenia is a debilitating psychiatric disorder with a significant number of patients not adequately responding to treatment. Phencyclidine (PCP) is used as a validated model for schizophrenia, shown to reliably induce positive, negative and cognitive-like behaviors in rodents. It was previously shown in our lab that behavioral phenotypes of PCP-treated mice can be alleviated after intracranial transplantation of mesenchymal stem cells (MSC). Here, we assessed the feasibility of intranasal delivery of MSCs-derived-extracellular vesicles (EVs) to alleviate schizophrenia-like behaviors in a PCP model of schizophrenia. As MSCs-derived EVs were already shown to concentrate at the site of lesion in the brain, we determined that in PCP induced injury the EVs migrate to the prefrontal cortex (PFC) of treated mice, a most involved area of the brain in schizophrenia. We show that intranasal delivery of MSC-EVs improve social interaction and disruption in prepulse inhibition (PPI) seen in PCP-treated mice. In addition, immunohistochemical studies demonstrate that the EVs preserve the number of parvalbumin-positive GABAergic interneurons in the PFC of treated mice. Finally, MSCs-EVs reduced glutamate levels in the CSF of PCP-treated mice, which might explain the reduction of toxicity. In conclusion, we show that MSCs-EVs improve the core schizophrenia-like behavior and biochemical markers of schizophrenia and might be used as a novel treatment for this incurable disorder.


Subject(s)
Extracellular Vesicles , Mesenchymal Stem Cells , Schizophrenia , Animals , Disease Models, Animal , Humans , Mice , Phencyclidine , Prefrontal Cortex , Schizophrenia/therapy
13.
Biomolecules ; 10(9)2020 09 15.
Article in English | MEDLINE | ID: mdl-32942544

ABSTRACT

Neurodegenerative disease refers to any pathological condition in which there is a progressive decline in neuronal function resulting from brain atrophy. Despite the immense efforts invested over recent decades in developing treatments for neurodegenerative diseases, effective therapy for these conditions is still an unmet need. One of the promising options for promoting brain recovery and regeneration is mesenchymal stem cell (MSC) transplantation. The therapeutic effect of MSCs is thought to be mediated by their secretome, and specifically, by their exosomes. Research shows that MSC-derived exosomes retain some of the characteristics of their parent MSCs, such as immune system modulation, regulation of neurite outgrowth, promotion of angiogenesis, and the ability to repair damaged tissue. Here, we summarize the functional outcomes observed in animal models of neurodegenerative diseases following MSC-derived exosome treatment. We will examine the proposed mechanisms of action through which MSC-derived exosomes mediate their therapeutic effects and review advanced studies that attempt to enhance the improvement achieved using MSC-derived exosome treatment, with a view towards future clinical use.


Subject(s)
Alzheimer Disease/therapy , Brain Injuries, Traumatic/therapy , Exosomes/transplantation , Mesenchymal Stem Cells/metabolism , Multiple Sclerosis/therapy , Spinal Cord Injuries/therapy , Status Epilepticus/therapy , Stroke/therapy , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Animals , Biological Transport , Brain Injuries, Traumatic/metabolism , Brain Injuries, Traumatic/pathology , Disease Models, Animal , Exosomes/chemistry , Exosomes/metabolism , Humans , Inflammation/prevention & control , Injections, Intravenous , Mice , Multiple Sclerosis/metabolism , Multiple Sclerosis/pathology , Nervous System/metabolism , Nervous System/pathology , Neurons/metabolism , Neurons/pathology , Spinal Cord Injuries/metabolism , Spinal Cord Injuries/pathology , Status Epilepticus/metabolism , Status Epilepticus/pathology , Stroke/metabolism , Stroke/pathology
14.
Int J Mol Sci ; 21(19)2020 Sep 24.
Article in English | MEDLINE | ID: mdl-32987947

ABSTRACT

DJ-1 is a redox-sensitive chaperone with reported antioxidant and anti-inflammatory properties in the kidney. The 20 amino acid (aa) peptide ND-13 consists of 13 highly conserved aas from the DJ-1 sequence and a TAT-derived 7 aa sequence that helps in cell penetration. This study aimed to determine if ND-13 treatment prevents the renal damage and inflammation associated with unilateral ureter obstruction (UUO). Male C57Bl/6 and DJ-1-/- mice underwent UUO and were treated with ND-13 or vehicle for 14 days. ND-13 attenuated the renal expression of fibrotic markers TGF-ß and collagen1a1 (Col1a1) and inflammatory markers TNF-α and IL-6 in C57Bl/6 mice. DJ-1-/- mice treated with ND-13 presented similar decreased expression of TNF-α, IL-6 and TGF-ß. However, in contrast to C57Bl/6 mice, ND-13 failed to prevent renal fibrosis or to ameliorate the expression of Col1a1 in this genotype. Further, UUO led to elevated urinary levels of the proximal tubular injury marker neutrophil gelatinase-associated lipocalin (NGAL) in DJ-1-/- mice, which were blunted by ND-13. Our results suggest that ND-13 protects against UUO-induced renal injury, inflammation and fibrosis. These are all crucial mechanisms in the pathogenesis of kidney injury. Thus, ND-13 may be a new therapeutic approach to prevent renal diseases.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Antioxidants/therapeutic use , Inflammation/drug therapy , Peptide Fragments/therapeutic use , Protective Agents/therapeutic use , Protein Deglycase DJ-1/therapeutic use , Ureteral Obstruction/drug therapy , Animals , Biomarkers/metabolism , Collagen Type I/metabolism , Collagen Type I, alpha 1 Chain , Interleukin-6/metabolism , Male , Mice , Mice, Inbred C57BL , Oxidative Stress/drug effects , Transforming Growth Factor beta/metabolism , Tumor Necrosis Factor-alpha/metabolism
15.
Sci Rep ; 10(1): 6875, 2020 04 23.
Article in English | MEDLINE | ID: mdl-32327686

ABSTRACT

One of the pathways of the unfolded protein response, initiated by PKR-like endoplasmic reticulum kinase (PERK), is key to neuronal homeostasis in neurodegenerative diseases. PERK pathway activation is usually accomplished by inhibiting eIF2α-P dephosphorylation, after its phosphorylation by PERK. Less tried is an approach involving direct PERK activation without compromising long-term recovery of eIF2α function by dephosphorylation. Here we show major improvement in cellular (STHdhQ111/111) and mouse (R6/2) Huntington's disease (HD) models using a potent small molecule PERK activator that we developed, MK-28. MK-28 showed PERK selectivity in vitro on a 391-kinase panel and rescued cells (but not PERK-/- cells) from ER stress-induced apoptosis. Cells were also rescued by the commercial PERK activator CCT020312 but MK-28 was significantly more potent. Computational docking suggested MK-28 interaction with the PERK activation loop. MK-28 exhibited remarkable pharmacokinetic properties and high BBB penetration in mice. Transient subcutaneous delivery of MK-28 significantly improved motor and executive functions and delayed death onset in R6/2 mice, showing no toxicity. Therefore, PERK activation can treat a most aggressive HD model, suggesting a possible approach for HD therapy and worth exploring for other neurodegenerative disorders.


Subject(s)
Enzyme Activators/pharmacology , Huntington Disease/enzymology , eIF-2 Kinase/metabolism , Animals , Apoptosis/drug effects , Disease Models, Animal , Endoplasmic Reticulum Stress/drug effects , Enzyme Activators/chemistry , Eukaryotic Initiation Factor-2/metabolism , Huntingtin Protein/metabolism , Huntington Disease/pathology , Huntington Disease/physiopathology , Mice , Models, Biological , Neostriatum/pathology , Neurons/drug effects , Neurons/metabolism , Neurons/pathology , Neuroprotective Agents/pharmacology , Phosphorylation/drug effects , Signal Transduction/drug effects , Survival Analysis
16.
Nucleic Acids Res ; 48(W1): W340-W347, 2020 07 02.
Article in English | MEDLINE | ID: mdl-32255179

ABSTRACT

Base editing is a genome-editing approach that employs the CRISPR/Cas system to precisely install point mutations within the genome. A deaminase enzyme is fused to a deactivated Cas and enables transition conversions. The diversified repertoire of base editors provides a wide range of base editing possibilities. However, existing base editors cannot induce transversion substitutions and activate only within a specified region relative to the binding site, thus, they cannot precisely correct every point mutation. Here, we present BE-FF (Base Editors Functional Finder), a novel computational tool that identifies suitable base editors to correct the translated sequence erred by a point mutation. When a precise correction is impossible, BE-FF aims to mutate bystander nucleotides in order to induce synonymous corrections that will correct the coding sequence. To measure BE-FF practicality, we analysed a database of human pathogenic point mutations. Out of the transition mutations, 60.9% coding sequences could be corrected. Notably, 19.4% of the feasible corrections were not achieved by precise corrections but only by synonymous corrections. Moreover, 298 cases of transversion-derived pathogenic mutations were detected to be potentially repairable by base editing via synonymous corrections, although base editing is considered impractical for such mutations.


Subject(s)
Gene Editing/methods , Point Mutation , Software , CRISPR-Cas Systems , Genetic Variation , Humans
17.
J Neural Transm (Vienna) ; 127(2): 205-212, 2020 02.
Article in English | MEDLINE | ID: mdl-32065333

ABSTRACT

Multiple system atrophy (MSA) is a sporadic neurodegenerative disorder characterized by striatonigral degeneration and olivopontocerebellar atrophy. The main hallmark of MSA is the aggregation of alpha-synuclein in oligodendrocytes, which contributes to the dysfunction and death of the oligodendrocytes, followed by neurodegeneration. Studies suggested that oxidative-excitatory pathway is associated with the progression of the disease. The aim of the current study was to test this concept by overexpression of excitatory amino acid transporter 2, glutamate dehydrogenase and nuclear factor (erythroid-derived 2)-related factor 2 genes in the striatum of two established mouse models of MSA. To induce the first model, we injected the mitochondrial neurotoxin, 3-nitropropionic acid (3-NP), unilaterally into the right striatum in 2-month-old C57BL/6 male mice. We demonstrate a significant improvement in two drug-induced rotational behavior tests, following unilateral injection the three genes. For the second model, we used transgenic mice expressing the alpha-synuclein gene under the proteolipid protein, in the age of 7 months, boosted with 3-NP to enhance the motor deficits and neurodegeneration. We show that the overexpression of the three genes attenuated the motor-related deficit in the elevated bridge and pole tests. Thus, our study indicates that glutamate excito-oxidative toxicity plays a major role in this MSA model and our gene therapy approach might suggest a novel strategy for MSA treatment.


Subject(s)
Behavior, Animal/physiology , Disease Models, Animal , Genetic Therapy , Multiple System Atrophy/physiopathology , Multiple System Atrophy/therapy , Animals , Convulsants/administration & dosage , Corpus Striatum/drug effects , Excitatory Amino Acid Transporter 2/genetics , Glutamate Dehydrogenase/genetics , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , NF-E2-Related Factor 2/genetics , Nitro Compounds/administration & dosage , Propionates/administration & dosage
18.
Int J Mol Sci ; 21(3)2020 Feb 09.
Article in English | MEDLINE | ID: mdl-32050445

ABSTRACT

Alzheimer's disease (AD) is a progressive neurodegenerative disorder and is the most common form of dementia in the elderly. Caspases, a family of cysteine proteases, are major mediators of apoptosis and inflammation. Caspase-6 is considered to be an up-stream modulator of AD pathogenesis as active caspase-6 is abundant in neuropil threads, neuritic plaques, and neurofibrillary tangles of AD brains. In order to further elucidate the role of caspase-6 activity in the pathogenesis of AD, we produced a double transgenic mouse model, combining the 5xFAD mouse model of AD with caspase-6 knock out (C6-KO) mice. Behavioral examinations of 5xFAD/C6-KO double transgenic mice showed improved performance in spatial learning, memory, and anxiety/risk assessment behavior, as compared to 5xFAD mice. Hippocampal mRNA expression analyses showed significantly reduced levels of inflammatory mediator TNF-α, while the anti-inflammatory cytokine IL-10 was increased in 5xFAD/C6-KO mice. A significant reduction in amyloid-ß plaques could be observed and immunohistochemistry analyses showed reduced levels of activated microglia and astrocytes in 5xFAD/C6-KO, compared to 5xFAD mice. Together, these results indicate a substantial role for caspase-6 in the pathology of the 5xFAD model of AD and suggest further validation of caspase-6 as a potential therapeutic target for AD.


Subject(s)
Alzheimer Disease/genetics , Caspase 6/genetics , Alzheimer Disease/pathology , Alzheimer Disease/physiopathology , Animals , Disease Models, Animal , Female , Gene Deletion , Male , Memory , Mice , Mice, Knockout , Mutation , Plaque, Amyloid/genetics , Plaque, Amyloid/pathology , Plaque, Amyloid/physiopathology , Spatial Learning
19.
Bio Protoc ; 10(11): e3635, 2020 Jun 05.
Article in English | MEDLINE | ID: mdl-33659306

ABSTRACT

Exosomes, a subtype of extracellular vesicles, are nanovesicles of endocytic origin. Exosomes contain a plethora of proteins, lipids, and genetic materials of parent cells to facilitate intercellular communications. Tracking exosomes in vivo is fundamentally important to understand their biodistribution pattern and the mechanism of biological actions in experimental models. Until now, a number of tracking protocols have been developed, including fluorescence labeling, bioluminescence imaging, magnetic resonance imaging, and computed tomography (CT) tracking of exosomes. Recently, we have shown the tracking and quantification of exosomes in a spinal cord injury model, by using two tracking approaches. More specifically, following intranasal administration of gold nanoparticle-encapsulated exosomes to rats bearing complete spinal cord injury, exosomes in the whole central nervous system were tracked by using microCT, and quantified by using inductively coupled plasma and flame atomic absorption spectroscopy. In addition, optical imaging of fluorescently labeled exosomes was performed to understand the abundance of migrating exosomes in the spinal cord lesion, as compared to the healthy controls, and to further examine their affinity to different cell types in the lesion. Thus, the protocol presented here aids in the study of exosome biodistribution at both cellular and organ levels, in the context of spinal cord injury. This protocol will also enable researchers to better elucidate the fate of administered exosomes in other models of interest.

20.
Front Neurosci ; 13: 990, 2019.
Article in English | MEDLINE | ID: mdl-31611761

ABSTRACT

Myeloperoxidase (MPO) is an enzyme expressed mostly by neutrophils and is a primary mediator of neutrophils oxidative stress response. While a profound body of evidence associates neutrophil-derived MPO in the pathogenesis of Alzheimer's disease (AD), this role has not been assessed in an animal model of AD. Here, we produced hematologic chimerism in the 5XFAD mouse model of AD, with MPO deficient mice, resulting in 5XFAD with hematologic MPO deficiency (5XFAD-MPO KO). Behavioral examinations of 5XFAD-MPO KO showed significant superior performance in spatial learning and memory, associative learning, and anxiety/risk assessment behavior, as compared to 5XFAD mice transplanted with WT cells (5XFAD-WT). Hippocampal immunohistochemical and mRNA expression analyses showed significantly reduced levels of inflammatory mediators in 5XFAD-MPO KO mice with no apparent differences in the numbers of amyloid-ß plaques. In addition, immunoblotting and mRNA analyses showed significantly reduced levels of APOE in 5XFAD-MPO KO. Together, these results indicate a substantial involvement of neutrophil-derived MPO in the pathology of 5XFAD model of AD and suggest MPO as a potential therapeutic target in AD.

SELECTION OF CITATIONS
SEARCH DETAIL
...