Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Biomed Mater Eng ; 24(1): 581-92, 2014.
Article in English | MEDLINE | ID: mdl-24211942

ABSTRACT

Titanium alloys are nowadays used for a wide range of biomedical applications thanks to their combination of high mechanical resistance, high corrosion resistance and biocompatibility. Nevertheless, the applicability of titanium alloys is sometimes limited due to their low microhardness and tribological resistance. Thus the titanium alloys cannot be successfully applied to prosthetic joint couplings. A wide range of surface treatments, in particular PVD coatings such as CrN and TiN, have been used in order to improve the tribological behaviour of titanium alloys. However, the low microhardness of the titanium substrate often results in coating failure due to cracks and delamination. For this reason, hybrid technologies based on diffusive treatments and subsequent PVD coatings may improve the overall coating resistance. In this work, conventional PVD coatings of CrN or TiCN, deposited on Titanium Grade 5, were characterized and then combined with a standard thermal diffusive nitriding treatment in order to improve the tribological resistance of the titanium alloys and avoid coating delamination. The different treatments were studied by means of scanning electron microscopy both on the sample surface and in cross-section. In-depth composition profiles were obtained using glow discharge optical emission spectrometry (GDOES) and localized energy dispersive X-ray diffraction on linear scan-lines. The microhardness and adhesion properties of the different treatments were evaluated using Vickers microhardness tests at different load conditions. The indentations were observed by means of SEM in order to evaluate delaminated areas and the crack's shape and density. The tribological behaviour of the different treatments was tested in dry conditions and in solution, in alternate pin-on-flat configuration, with a frequency of 0.5 Hz. After testing, the surface was investigated by means of stylus profilometry and SEM both on the surface and in cross-section. The standalone PVD coatings show a limited tribological resistance due to the low hardness of the substrate, which results in fractures and delamination. The combination of a diffusive process and a subsequent PVD coating shows a stronger effect in improving the tribological resistance of the substrate.


Subject(s)
Biocompatible Materials/chemistry , Coated Materials, Biocompatible/chemistry , Titanium/chemistry , Adhesiveness , Alloys , Corrosion , Diffusion , Hardness , Humans , Joint Prosthesis , Joints/pathology , Materials Testing , Microscopy, Electron, Scanning , Prosthesis Failure , Stress, Mechanical , Surface Properties , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...