Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Infect Dis ; 23(1): 97, 2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36797666

ABSTRACT

BACKGROUND: Individuals with post-acute sequelae of COVID (PASC) may have a persistence in immune activation that differentiates them from individuals who have recovered from COVID without clinical sequelae. To investigate how humoral immune activation may vary in this regard, we compared patterns of vaccine-provoked serological response in patients with PASC compared to individuals recovered from prior COVID without PASC. METHODS: We prospectively studied 245 adults clinically diagnosed with PASC and 86 adults successfully recovered from prior COVID. All participants had measures of humoral immunity to SARS-CoV-2 assayed before or after receiving their first-ever administration of COVID vaccination (either single-dose or two-dose regimen), including anti-spike (IgG-S and IgM-S) and anti-nucleocapsid (IgG-N) antibodies as well as IgG-S angiotensin-converting enzyme 2 (ACE2) binding levels. We used unadjusted and multivariable-adjusted regression analyses to examine the association of PASC compared to COVID-recovered status with post-vaccination measures of humoral immunity. RESULTS: Individuals with PASC mounted consistently higher post-vaccination IgG-S antibody levels when compared to COVID-recovered (median log IgG-S 3.98 versus 3.74, P < 0.001), with similar results seen for ACE2 binding levels (median 99.1 versus 98.2, P = 0.044). The post-vaccination IgM-S response in PASC was attenuated but persistently unchanged over time (P = 0.33), compared to in COVID recovery wherein the IgM-S response expectedly decreased over time (P = 0.002). Findings remained consistent when accounting for demographic and clinical variables including indices of index infection severity and comorbidity burden. CONCLUSION: We found evidence of aberrant immune response distinguishing PASC from recovered COVID. This aberrancy is marked by excess IgG-S activation and ACE2 binding along with findings consistent with a delayed or dysfunctional immunoglobulin class switching, all of which is unmasked by vaccine provocation. These results suggest that measures of aberrant immune response may offer promise as tools for diagnosing and distinguishing PASC from non-PASC phenotypes, in addition to serving as potential targets for intervention.


Subject(s)
COVID-19 Vaccines , COVID-19 , Post-Acute COVID-19 Syndrome , Humans , Angiotensin-Converting Enzyme 2 , Antibodies, Viral , COVID-19/prevention & control , Disease Progression , Immunoglobulin G , Immunoglobulin M , SARS-CoV-2 , Vaccination , Post-Acute COVID-19 Syndrome/immunology , COVID-19 Vaccines/immunology
2.
J Parkinsons Dis ; 12(3): 743-757, 2022.
Article in English | MEDLINE | ID: mdl-35147552

ABSTRACT

Urinary tract infection (UTI) is a common precipitant of acute neurological deterioration in patients with Parkinson's disease (PD) and a leading cause of delirium, functional decline, falls, and hospitalization. Various clinical features of PD including autonomic dysfunction and altered urodynamics, frailty and cognitive impairment, and the need for bladder catheterization contribute to an increased risk of UTI. Sepsis due to UTI is a feared consequence of untreated or undertreated UTI and a leading cause of morbidity in PD. Emerging research suggests that immune-mediated brain injury may underlie the pathogenesis of UTI-induced deterioration of PD symptoms. Existing strategies to prevent UTI in patients with PD include use of topical estrogen, prophylactic supplements, antibiotic bladder irrigation, clean catheterization techniques, and prophylactic oral antibiotics, while bacterial interference and vaccines/immunostimulants directed against common UTI pathogens are potentially emerging strategies that are currently under investigation. Future research is needed to mitigate the deleterious effects of UTI in PD.


Subject(s)
Parkinson Disease , Urinary Tract Infections , Anti-Bacterial Agents/therapeutic use , Humans , Parkinson Disease/complications , Parkinson Disease/drug therapy , Urinary Tract Infections/complications , Urinary Tract Infections/drug therapy
3.
Nat Cardiovasc Res ; 1(12): 1187-1194, 2022 Dec.
Article in English | MEDLINE | ID: mdl-37303827

ABSTRACT

Postural orthostatic tachycardia syndrome (POTS) has been previously described after SARS-CoV-2 infection; however, limited data is available on the relation of POTS with COVID-19 vaccination. Here we show in a cohort of 284,592 COVID-19 vaccinated individuals using a sequence-symmetry analysis, that the odds of POTS are higher 90 days after vaccine exposure than 90 days prior to exposure, and that the odds for POTS are higher than referent conventional primary care diagnoses, but lower than the odds of new POTS diagnosis after SARS-CoV-2 infection. Our results identify a possible association between COVID-19 vaccination and incidence of POTS. Notwithstanding the probable low incidence of POTS after COVID-19 vaccination, particularly when compared to SARS-Cov-2 post-infection odds which were five times higher, our results suggest that further studies, are needed to investigate the incidence and etiology of POTS occurring after COVID-19 vaccination.

5.
Endocr Relat Cancer ; 27(9): R281-R292, 2020 09.
Article in English | MEDLINE | ID: mdl-32508311

ABSTRACT

The current pandemic (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a global health challenge with active development of antiviral drugs and vaccines seeking to reduce its significant disease burden. Early reports have confirmed that transmembrane serine protease 2 (TMPRSS2) and angiotensin converting enzyme 2 (ACE2) are critical targets of SARS-CoV-2 that facilitate viral entry into host cells. TMPRSS2 and ACE2 are expressed in multiple human tissues beyond the lung including the testes where predisposition to SARS-CoV-2 infection may exist. TMPRSS2 is an androgen-responsive gene and its fusion represents one of the most frequent alterations in prostate cancer. Androgen suppression by androgen deprivation therapy and androgen receptor signaling inhibitors form the foundation of prostate cancer treatment. In this review, we highlight the growing evidence in support of androgen regulation of TMPRSS2 and ACE2 and the potential clinical implications of using androgen suppression to downregulate TMPRSS2 to target SARS-CoV-2. We also discuss the future directions and controversies that need to be addressed in order to establish the viability of targeting TMPRSS2 and/or ACE2 through androgen signaling regulation for COVID-19 treatment, particularly its relevance in the context of prostate cancer management.


Subject(s)
Androgen Antagonists/therapeutic use , Betacoronavirus , Coronavirus Infections/etiology , Pneumonia, Viral/etiology , Prostatic Neoplasms/drug therapy , Androgens/physiology , Angiotensin-Converting Enzyme 2 , COVID-19 , Coronavirus Infections/drug therapy , Humans , Hypothalamo-Hypophyseal System/physiology , Male , Pandemics , Peptidyl-Dipeptidase A/physiology , Pneumonia, Viral/drug therapy , SARS-CoV-2 , Serine Endopeptidases/physiology
6.
Clin Infect Dis ; 71(12): 3168-3173, 2020 12 15.
Article in English | MEDLINE | ID: mdl-32575124

ABSTRACT

BACKGROUND: Preliminary data from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pneumonia patients indicate that a cytokine storm may increase morbidity and mortality. Tocilizumab (anti-IL-6R) is approved by the Food and Drug Administration for treatment of cytokine storm associated with chimeric antigen receptor T-cell therapy. Here we examined compassionate use of tocilizumab in patients with SARS-CoV-2 pneumonia. METHODS: We report on a single-center study of tocilizumab in hospitalized patients with SARS-CoV-2 pneumonia. All patients had confirmed SARS-CoV-2 pneumonia and oxygen saturations <90% on oxygen support with most intubated. We examined clinical and laboratory parameters including oxygen and vasopressor requirements, cytokine profiles, and C-reactive protein (CRP) levels pre- and post-tocilizumab treatment. RESULTS: Twenty-seven SARS-CoV-2 pneumonia patients received one 400 mg dose of tocilizumab. Interleukin (IL)-6 was the predominant cytokine detected at tocilizumab treatment. Significant reductions in temperature and CRP were seen post-tocilizumab. However, 4 patients did not show rapid CRP declines, of whom 3 had poorer outcomes. Oxygen and vasopressor requirements diminished over the first week post-tocilizumab. Twenty-two patients required mechanical ventilation; at last follow-up, 16 were extubated. Adverse events and serious adverse events were minimal, but 2 deaths (7.4%) occurred that were felt unrelated to tocilizumab. CONCLUSIONS: Compared to published reports on the morbidity and mortality associated with SARS-CoV-2, tocilizumab appears to offer benefits in reducing inflammation, oxygen requirements, vasopressor support, and mortality. The rationale for tocilizumab treatment is supported by detection of IL-6 in pathogenic levels in all patients. Additional doses of tocilizumab may be needed for those showing slow declines in CRP. Proof of efficacy awaits randomized, placebo-controlled clinical trials.


Subject(s)
COVID-19 , SARS-CoV-2 , Adult , Aged , Aged, 80 and over , Antibodies, Monoclonal, Humanized , Compassionate Use Trials , Humans , Male , Middle Aged , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...