Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Genet Res (Camb) ; 2024: 5564596, 2024.
Article in English | MEDLINE | ID: mdl-38348366

ABSTRACT

Despite much attention given to the history of goat evolution in Kenya, information on the origin, demographic history, dispersal route, and genetic diversity of Galla goats remains unclear. Here, we examined the genetic background, diversity, demographic history, and population genetic variation of Galla goats using mtDNA D-loop and HSP70 single-nucleotide polymorphism markers. The results revealed 90 segregating sites and 68 haplotypes in a 600-bp mtDNA D-loop sequence. The overall mean mitochondrial haplotype diversity was 0.993. The haplotype diversities ranged between 0.8939 ± 0.0777 and 1.0000 ± 0.0221 in all populations supporting high genetic diversity. Mitochondrial phylogenetic analysis revealed three Galla goat haplogroups (A, G, and D), supporting multiple maternal ancestries, of which haplogroup A was the most predominant. Analysis of molecular variance (AMOVA) showed considerable variation within populations at 94.39%, evidence of high genetic diversity. Bimodal mismatch distribution patterns were observed while most populations recorded negative results for Tajima and Fu's Fs neutrality tests supporting population expansion. Genetic variation among populations was also confirmed using HSP70 gene fragment sequences, where six polymorphic sites which defined 21 haplotypes were discovered. Analysis of molecular variance revealed a significant FST index value of 0.134 and a high FIS index value of 0.746, an indication of inbreeding. This information will pave the way for conservation strategies and informed breeding to improve Galla or other goat breeds for climate-smart agriculture.


Subject(s)
DNA, Mitochondrial , Goats , Animals , Goats/genetics , DNA, Mitochondrial/genetics , Phylogeny , Genetic Variation/genetics , Haplotypes/genetics , Polymorphism, Single Nucleotide/genetics , HSP70 Heat-Shock Proteins/genetics
2.
Plants (Basel) ; 12(22)2023 Nov 16.
Article in English | MEDLINE | ID: mdl-38005772

ABSTRACT

Ammonium toxicity in macrophytes reduces growth and development due to a disrupted metabolism and high carbon requirements for internal ammonium detoxification. To provide more molecular support for ammonium detoxification in the above-ground and below-ground parts of Myriophyllum spicatum, we separated (using hermetic bags) the aqueous medium surrounding the below-ground from that surrounding the above-ground and explored the genes in these two regions. The results showed an upregulation of asparagine synthetase genes under high ammonium concentrations. Furthermore, the transcriptional down and/or upregulation of other genes involved in nitrogen metabolism, including glutamate dehydrogenase, ammonium transporter, and aspartate aminotransferase in above-ground and below-ground parts were crucial for ammonium homeostasis under high ammonium concentrations. The results suggest that, apart from the primary pathway and alternative pathway, the asparagine metabolic pathway plays a crucial role in ammonium detoxification in macrophytes. Therefore, the complex genetic regulatory network in M. spicatum contributes to its ammonium tolerance, and the above-ground part is the most important in ammonium detoxification. Nevertheless, there is a need to incorporate an open-field experimental setup for a conclusive picture of nitrogen dynamics, toxicity, and the molecular response of M. spicatum in the natural environment.

3.
Front Genet ; 13: 762202, 2022.
Article in English | MEDLINE | ID: mdl-35186022

ABSTRACT

Doum palm (Hyphaene compressa) is a perennial economic plant primarily growing in Kenya's Arid and Semi-Arid Lands (ASALs). It is heavily relied upon for food, animal feed, construction materials and medicine, making it an ideal plant for resource sustainability. However, the limited information on its genetic resources has hindered its breeding and conservation studies. This study used the genotyping by sequencing approach to identify Single Nucleotide Polymorphisms. These SNPs were further used to assess the genetic diversity and population structure of 96 H. compressa accessions from Coastal, Northern and Eastern ASAL regions of Kenya using two approaches; reference-based and de novo-based assemblies. STRUCTURE analysis grouped the sampled accessions into two genetic clusters (Cluster 1 and Cluster 2). Cluster 1 included accessions from the Northern region, whereas Cluster 2 included all accessions from Eastern and Coastal regions. Accessions from Kwale (Coastal) had mixed ancestry from both Cluster 1 and Cluster 2. These STRUCTURE findings were further supported by principal components analysis, discriminant analysis of principal components and phylogenetic analysis. Analysis of molecular variance indicated greater genetic variation within populations (92.7%) than among populations (7.3%). An overall FST of 0.074 was observed, signifying moderate genetic differentiation among populations. The results of this study will provide information useful in breeding, marker-assisted selection and conservation management of H. compressa.

4.
Ecol Evol ; 11(24): 18562-18574, 2021 Dec.
Article in English | MEDLINE | ID: mdl-35003693

ABSTRACT

Hunting wild African harlequin quails (Coturnix delegorguei delegorguei) using traditional methods in Western Kenya has been ongoing for generations, yet their genetic diversity and evolutionary history are largely unknown. In this study, the genetic variation and demographic history of wild African harlequin quails were assessed using a 347bp mitochondrial DNA (mtDNA) control region fragment and 119,339 single nucleotide polymorphisms (SNPs) from genotyping-by-sequencing (GBS) data. Genetic diversity analyses revealed that the genetic variation in wild African harlequin quails was predominantly among individuals than populations. Demographic analyses indicated a signal of rapid demographic expansion, and the estimated time since population expansion was found to be 150,000-350,000 years ago, corresponding to around the Pliocene-Pleistocene boundary. A gradual decline in their effective population size was also observed, which raised concerns about their conservation status. These results provide the first account of the genetic diversity of wild African harlequin quails of Siaya, thereby creating a helpful foundation in their biodiversity conservation.

5.
Int J Microbiol ; 2020: 4705768, 2020.
Article in English | MEDLINE | ID: mdl-32908524

ABSTRACT

Newcastle disease (ND) causes significant economic losses in the poultry industry in developing countries. In Kenya, despite rampant annual ND outbreaks, implementation of control strategies is hampered by a lack of adequate knowledge on the circulating and outbreak causing-NDV strains. This study reports the first complete genome sequences of NDV from backyard chicken in Kenya. The results showed that all three isolates are virulent, as assessed by the mean death time (MDT) and intracerebral pathogenicity index (ICPI) in specific antibody negative (SAN) embryonated eggs and 10-day-old chickens, respectively. Also, the polybasic amino acid sequence at the fusion-protein cleavage site had the motif 112RRQKRFV118. Histopathological findings in four-week-old SPF chicken challenged with the NDV isolates KE001, KE0811, and KE0698 showed multiple organ involvement at five days after infection with severe effects seen in lymphoid tissues and blood vessels. Analysis of genome sequences obtained from the three isolates showed that they were 15192 base pair (bp) in length and had genomic features consistent with other NDV strains, the functional sites within the coding sequence being highly conserved in the sequence of the three isolates. Amino acid residues and substitutions in the structural proteins of the three isolates were similar to the newly isolated Tanzanian NDV strain (Mbeya/MT15). A similarity matrix showed a high similarity of the isolates to NDV strains of class II genotype V (89-90%) and subgenotype Vd (95-97%). Phylogenetic analysis confirmed that the three isolates are closely related to NDV genotype V strains but form a distinct cluster together with NDV strains from the East African countries of Uganda and Tanzania to form the newly characterized subgenotype Vd. Our study provides the first description of the genomic and pathological characteristics of NDV of subgenotype Vd and lays a baseline in understanding the evolutionary dynamics of NDV and, in particular, Genotype V. This information will be useful in the development of specific markers for detection of viruses of genotype V and generation of genotype matched vaccines.

6.
Poult Sci ; 98(7): 2747-2755, 2019 Jul 01.
Article in English | MEDLINE | ID: mdl-30850827

ABSTRACT

Indigenous chickens at the Swahili coast and other traditional migratory corridors in Kenya represent important populations that are inconclusively characterized. Using a comprehensive dataset of Kenyan indigenous chickens and additional mined data of chickens from 8 African and 5 Asian countries, we performed univariate and multivariate assessments to uncover the underlying phenotypic and morphometric variability. Kenyan indigenous chickens expressed differentiation of several qualitative and quantitative traits, both among different counties in the Swahili coast, and among coastal, western, and northern migratory corridors. There was a substantial population stratification of these chickens, particularly distinctive clustering of chickens from Marsabit, Lamu, and Kilifi counties. The pooled dataset further clarified a closer phenotypic and morphometric proximity of chickens within different geographical regions. We additionally revealed a preponderance of bantam and rumpless traits to hot and humid locales, and feathered shanks to cooler regions. Currently, most chicken breeding programs in developing countries rely on phenotypic and morphometric properties. Hence, the high chicken diversity and population stratification observed in our study, possibly shaped by natural and artificial selective pressures, reveal opportunities for complementary phenotypic and genotypic assessments to identify resources for effective breed improvement and conservation strategies of indigenous chickens in the tropics.


Subject(s)
Chickens/anatomy & histology , Chickens/classification , Animals , Chickens/genetics , Female , Kenya , Male , Phenotype , Tropical Climate
SELECTION OF CITATIONS
SEARCH DETAIL
...