Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Food Sci Nutr ; 12(2): 734-764, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38370073

ABSTRACT

This article addresses the bioactive components in coffee aroma, their metabolism, and the mechanism of action in lowering the risk of various potential health problems. The main bioactive components involved in the perceived aroma of coffee and its related health benefits are caffeine, chlorogenic acid (CGA), trigonelline, diterpenes, and melanoids. These compounds are involved in various physiological activities. Caffeine has been shown to have anticancer properties, as well as the ability to prevent the onset and progression of hepatocellular carcinoma and to be anti-inflammatory. CGA exhibits antioxidant action and is implicated in gut health, neurodegenerative disease protection, type 2 diabetes, and cardiovascular disease prevention. Furthermore, together with diterpenes, CGA has been linked to anticancer activity. Trigonelline, on the other side, has been found to lower oxidative stress by increasing antioxidant enzyme activity and scavenging reactive oxygen species. It also prevents the formation of kidney stones. Diterpenes and melanoids possess anti-inflammatory and antioxidant properties, respectively. Consuming three to four cups of filtered coffee per day, depending on an individual's physiological condition and health status, has been linked to a lower risk of several degenerative diseases. Despite their health benefits, excessive coffee intake above the recommended daily dosage, calcium and vitamin D deficiency, and unfiltered coffee consumption all increase the risk of potential health concerns. In conclusion, moderate coffee consumption lowers the risk of different noncommunicable diseases.

2.
Food Sci Nutr ; 11(8): 4419-4431, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37576063

ABSTRACT

Coffee arabica, originated in Ethiopia, is considered a quality bean for its high sensory qualities, and has a special price in the world coffee market. The country is a pool of genetic diversity for Arabica coffee, and coffee from different regions has a distinct flavor profile. Their exceptional quality is attributed to their genetic diversity, favorable environmental conditions, and agroforestry-based production system. However, the country still needs to benefit from its single-origin product due to a lack of appropriate traceability information to register for its geographical indication. Certification of certain plants or plant-derived products emerged to inform consumers about their exceptional qualities due to their geographical origin and protect the product from fraud. The recently emerging foodomics approaches, namely proteomics, genomics, and metabolomics, are reported as suitable means of regional agri-food product authentication and traceability. Particularly, the metabolomics approach provides truthful information on product traceability. Despite efforts by some researchers to trace the geographical origin of Ethiopian Arabica coffees through stable isotope and phenolic compound profiling and elemental analysis, foodomics approaches are not used to trace the geographical origin of Arabica specialty coffees from various parts of the country. A metabolomics-based traceability system that demonstrates the connection between the exceptional attributes of Ethiopian Arabica specialty coffees and their geographic origin is recommended to maximize the benefit of single-origin coffees.

3.
J Agric Food Chem ; 62(39): 9369-86, 2014 Oct 01.
Article in English | MEDLINE | ID: mdl-25198667

ABSTRACT

The demand for new fruit cultivars with high levels of phytochemicals, in particular phenolic compounds, has received increasing attention from biochemists, pharmaceutical companies, plant breeders, and the general public due to their health benefits. This review focuses on the economically important Rosaceae, which contains varying proportions and concentrations of these compounds. The paper discusses the common phenolics in the Rosaceae including phenolic acids, flavonols, flavanols, anthocyanins, and dihydrochalcones. The nonextractable phenolics are also presented but not discussed in detail. The metabolism and bioavailability of phenolics, as well as human and environmental factors that affect their concentration and composition, are highlighted. Furthermore, the paper presents different approaches for biofortification and posits that breeding may be the most viable and sustainable option as it improves other fruit quality traits simultaneously and increases confidence in adoption of new cultivars with enhanced consumer appeal.


Subject(s)
Crops, Agricultural/chemistry , Fruit/chemistry , Nuts/chemistry , Phenols/chemistry , Plant Extracts/chemistry , Rosaceae/chemistry , Humans , Molecular Structure
SELECTION OF CITATIONS
SEARCH DETAIL
...