Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Chem Commun (Camb) ; 56(94): 14805-14808, 2020 Nov 26.
Article in English | MEDLINE | ID: mdl-33184618

ABSTRACT

1,4-Bis(trimethysilyl)-1,4-dihydropyrazine 1 has been utilized as a small molecule precursor for carbonization to N,O-containing few-layered carbon sheets 3via the formation of a polymeric material 2 upon simple air exposure at room temperature. Without any further purification, this multi-functionalized carbon material 3 exhibited excellent anode performance in a lithium ion battery.

2.
Chem Asian J ; 15(5): 585-589, 2020 Mar 02.
Article in English | MEDLINE | ID: mdl-32017407

ABSTRACT

The organosilicon reagent 1,4-bis-(trimethylsilyl)-1,4-diaza-2,5-cyclohexadiene 2 plays the binary role of the simultaneous reduction of GeCl2 .dioxane 1 dissolved in oleylamine to Ge nanocrystals and the formation of graphitic sheets under hot-injection conditions. This colloidal synthetic route to germanium nanocrystals embedded on N-doped graphitic nanosheets Ge/NG is free of any template or catalyst and involves easy purification techniques. The Ge/NG/C obtained after carbonization has been explored for anode performance in lithium-ion batteries. Both Ge/NG and Ge/NG/C can be obtained on a gram scale and are bottleable under argon for months.

3.
ChemSusChem ; 13(1): 196-204, 2020 Jan 09.
Article in English | MEDLINE | ID: mdl-31549796

ABSTRACT

A 3 D intermetallic anti-perovskite carbide, Fe3 SnC, is reported as a Li-ion battery anode. Single-phase Fe3 SnC showed a reversible Li-ion capacity of 426 mAh g-1 that increased significantly (600 mAh g-1 ) upon its in situ synthesis by electrospinning and pyrolysis to render a conducting carbon nanofibre (CNF) based composite. Importantly, the Fe3 SnC@CNF composite showed excellent stability in up to 1000 cycles with a remarkable 96 % retention of capacity. The rate performance was equally impressive with a high capacity of 500 mAh g-1 delivered at a high current density of 2 A g-1 . An estimation of Li ion diffusion from the electrochemical impedance data showed a major enhancement of the rate by a factor of 2 in the case of Fe3 SnC@CNF compared to the single-phase Fe3 SnC sample. Post-cyclic characterisation revealed that the unit cell was retained despite a volume expansion upon the inclusion of four Li atoms per unit cell, as calculated from the capacity value. The cyclic voltammogram shows four distinctive peaks that could be identified as the sequential incorporation of up to four Li atoms. First-principles DFT calculations were performed to elucidate the favourable sites for the inclusion of 1-4 Li atoms inside the Fe3 SnC unit cell along with the associated strain.

4.
ACS Appl Mater Interfaces ; 8(36): 24049-56, 2016 Sep 14.
Article in English | MEDLINE | ID: mdl-27553685

ABSTRACT

We demonstrate a consistent electrowetting response on ferroelectric poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) insulator covered with a thin Teflon AF layer. This bilayer exhibits a factor of 3 enhancement in the contact angle modulation compared to that of conventional single-layered Teflon AF dielectric. On the basis of the proposed model the enhancement is attributed to the high value of effective dielectric constant (εeff ≈ 6) of the bilayer. Furthermore, the bilayer dielectric exhibits a hysteresis-free contact angle modulation over many AC voltage cycles. But the contact angle modulation for DC voltage shows a hysteresis because of the field-induced residual polarization in the ferroelectric layer. Finally, we show that a thin bilayer exhibits contact angle modulation of Δθ (U) ≈ 60° at merely 15 V amplitude of AC voltage indicating a potential dielectric for practical low voltage electrowetting applications. A proof of concept confirms electrowetting based rapid mixing of a fluorescent dye in aqueous glycerol solution for 15 V AC signal.

5.
ACS Appl Mater Interfaces ; 8(1): 553-62, 2016 Jan 13.
Article in English | MEDLINE | ID: mdl-26652291

ABSTRACT

Here, we report the preparation of a flexible, free-standing, Pt- and TCO-free counter electrode in dye-sensitized solar cell (DSSC)-derived from polyethylenedioxythiophene (PEDOT)-impregnated cellulose paper. The synthetic strategy of making the thin flexible PEDOT paper is simple and scalable, which can be achieved via in situ polymerization all through a roll coating technique. The very low sheet resistance (4 Ω/□) obtained from a film of 40 µm thick PEDOT paper (PEDOT-p-5) is found to be superior to the conventional fluorine-doped tin oxide (FTO) substrate. The high conductivity (357 S/cm) displayed by PEDOT-p-5 is observed to be stable under ambient conditions as well as flexible and bending conditions. With all of these features in place, we could develop an efficient Pt- and TCO-free flexible counter electrode from PEDOT-p-5 for DSSC applications. The catalytic activity toward the tri-iodide reduction of the flexible electrode is analyzed by adopting various electrochemical methodologies. PEDOT-p-5 is found to display higher exchange current density (7.12 mA/cm(2)) and low charge transfer resistance (4.6 Ω) compared to the benchmark Pt-coated FTO glass (2.40 mA/cm(2) and 9.4 Ω, respectively). Further, a DSSC fabricated using PEDOT-p-5 as the counter electrode displays a comparable efficiency of 6.1% relative to 6.9% delivered by a system based on Pt/FTO as the counter electrode.

6.
Analyst ; 140(6): 1837-41, 2015 Mar 21.
Article in English | MEDLINE | ID: mdl-25679995

ABSTRACT

Photoluminescent carbon dots of 4-5 nm size were prepared from starch (Tapioca Sago) through a solution method under mild conditions. The as-prepared carbon dots were used as photoluminescence probes for highly anion selective fluoride ion detection in aqueous solutions. A ready-to-use device is also demonstrated.


Subject(s)
Carbon/chemistry , Fluorides/analysis , Luminescent Agents/chemistry , Manihot/chemistry , Quantum Dots/chemistry , Starch/chemistry , Water/analysis , Green Chemistry Technology , Luminescent Measurements , Models, Molecular , Quantum Dots/ultrastructure
7.
Soft Matter ; 11(13): 2655-64, 2015 Apr 07.
Article in English | MEDLINE | ID: mdl-25690856

ABSTRACT

Electrowetting (EW) offers executive wetting control of conductive liquids on several polymer surfaces. We report a peculiar electrowetting response for aqueous drops on a polystyrene (PS) dielectric surface in the presence of silicone oil. After the first direct current (DC) voltage cycle, the droplet failed to regain Young's angle, yielding contact angle hysteresis, which is close to a value found in ambient air. We conjecture that the hysteretic EW response appears from in situ surface modification using electric field induced water-ion contact with PS surface inducing nano-structuration by electro-hydrodynamic (EHD) instability. Atomic force microscopy confirms the formation of nano-structuration on the electrowetted surface. The effects of molecular weight, applied electric field, water conductivity and pH on nano-structuration are studied. Finally, the EW based nano-structuration on PS surface is used for the enhanced loading of aqueous dyes on hydrophobic surfaces.

8.
ACS Appl Mater Interfaces ; 6(18): 15881-8, 2014 Sep 24.
Article in English | MEDLINE | ID: mdl-25141299

ABSTRACT

We report field electron emission investigations on pulsed laser-deposited molybdenum disulfide (MoS2) thin films on W-tip and Si substrates. In both cases, under the chosen growth conditions, the dry process of pulsed laser deposition (PLD) is seen to render a dense nanostructured morphology of MoS2, which is important for local electric field enhancement in field emission application. In the case of the MoS2 film on silicon (Si), the turn-on field required to draw an emission current density of 10 µA/cm(2) is found to be 2.8 V/µm. Interestingly, the MoS2 film on a tungsten (W) tip emitter delivers a large emission current density of ∼30 mA/cm(2) at a relatively lower applied voltage of ∼3.8 kV. Thus, the PLD-MoS2 can be utilized for various field emission-based applications. We also report our results of photodiode-like behavior in (n- and p- type) Si/PLD-MoS2 heterostructures. Finally we show that MoS2 films deposited on flexible kapton substrate show a good photoresponse and recovery. Our investigations thus hold great promise for the development of PLD MoS2 films in application domains such as field emitters and heterostructures for novel nanoelectronic devices.

9.
Nanoscale ; 6(17): 10332-9, 2014 Sep 07.
Article in English | MEDLINE | ID: mdl-25072706

ABSTRACT

Here, we report a highly conducting 1-dimensionally (1-D) aligned polyethylenedioxythiophene (PEDOT) along the inner and outer surfaces of a hollow carbon nanofiber (CNF) and its application as a counter electrode in a dye sensitized solar cell (DSSC). The hybrid material (CP-25) displays a conversion efficiency of 7.16% compared to 7.30% for the standard Pt counter electrode, 4.48% for bulk PEDOT and 5.56% for CNF. The enhanced conversion efficiency of CP-25 is attributed to the accomplishment of high conductivity and surface area of PEDOT through the 1-D alignment compared to its bulk counterpart. Reduced charge transfer resistance and high conductivity of CP-25 could be proven by cyclic voltammetry, impedance analysis and Tafel experiments. Further, through a long-term stability test involving efficiency profiling for 20 days, it is observed that CP-25 possesses excellent durability compared to the bulk PEDOT.

10.
Inorg Chem ; 53(8): 3961-72, 2014 Apr 21.
Article in English | MEDLINE | ID: mdl-24684654

ABSTRACT

We have carried out the effect of post annealing temperatures on the performance of solution-grown ZnO rods as photoanodes in dye-sensitized solar cells. Keeping our basic objective of exploring the effect of native defects on the performance of DSSC, we have synthesized ZnO rods having length in the range of 2-5 µm by a modified sonication-induced precipitation technique. We performed extensive characterization on the samples annealed at various temperatures and confirmed that annealing at 300 °C results in ZnO rods with minimum native defects that have been identified as doubly ionized oxygen vacancies. The electron paramagnetic resonance measurements on the samples, on the other hand, confirmed the presence of shallow donors in the low temperature annealed samples. We also carried out electrochemical impedance measurements to understand the transport properties at different interfaces in the solar cell assembly. We could conclude that solution-processed ZnO rods annealed at 300 °C are better suited for fabricating DSSC with improved efficiency (1.57%), current density (5.11 mA/cm(2)), and fill factor (45.29%). On the basis of our results, we were able to establish a close connection between the defects in the metal oxide electron transporting nano system and the DSSC performance.

11.
J Mater Chem B ; 1(47): 6538-6543, 2013 Dec 21.
Article in English | MEDLINE | ID: mdl-32261331

ABSTRACT

Water-soluble quantum dots (QDs) are extensively used for molecular sensing because of the flexibility they offer in terms of modification of the QDs surface with a variety of functional groups using thiol chemistry and monitoring by fluorescence intensity. We describe a simple assay that allows the photoluminescence (PL) detection of H2O2 and glucose in aqueous samples and demonstrate its applicability by estimating glucose in blood. To enable the glucose detection, we functionalized the 3-mercaptopropanoic acid (MPA) capped CdTe QDs with glucose oxidase (GOx), the enzyme specific to ß-d-glucose, using carbodiimide chemistry. The fluorescence of the GOx-functionalized CdTe QDs was quenched on the interaction with glucose. The same photoluminescence quenching was also observed in gel form, when a GOx modified CdTe QDs loaded agarose gel was dipped in H2O2 and glucose solutions, respectively.

12.
Nanomedicine ; 8(4): 452-9, 2012 May.
Article in English | MEDLINE | ID: mdl-21839056

ABSTRACT

Monodispersed, superparamagnetic nickel cobaltite (NCO) nanoparticles were functionalized using mercaptopropionic acid (MPA). MPA conjugates with NCO forming a metal-carboxylate linkage, with the MPA-MPA interaction occurring via formation of disulfide bonds, leaving another carboxyl end free for additional conjugation. The cytotoxicity studies on NCO-MPA show cell viability of ∼100% up to a dosage of 40 µg/mL on SiHa, MCF7, and B16F10 cell lines, and on mouse primary fibroblasts. Time-dependent cell viability studies done for a duration of 72 hours showed the cell lines' viability up to 80% for dosages as high as 80 µg/mL. Negligible leaching (<5 ppm) of ionic Co or Ni was noted into the delivery medium. Upon subjecting the NCO-MPA dispersion (0.1 mg/mL) to radiofrequency absorption, the nanoparticles were heated to 75°C within 2 minutes, suggesting its promise as a magnetic hyperthermia agent. Furthermore, the amino acid lysine and the drug cephalexin were successfully adducted to the NCO system, suggesting its potential for drug delivery. FROM THE CLINICAL EDITOR: NCO-MPA nanopartciles were found to be promising magnetic hyperthermia agents, suggesting potential future clinical applications.


Subject(s)
Anti-Bacterial Agents/pharmacology , Biocompatible Materials/pharmacology , Cephalexin/pharmacology , Drug Delivery Systems/methods , Fever/drug therapy , Materials Testing , Nanoparticles , Animals , Biocompatible Materials/chemical synthesis , Cell Line, Tumor , Cell Survival/drug effects , Drug Evaluation, Preclinical , Humans , Lysine/pharmacology , Mice
13.
ACS Appl Mater Interfaces ; 3(7): 2440-4, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21608995

ABSTRACT

In this work, "isobutrin", an ecofriendly sensitizer that is extracted from Butea monosperma (commonly known as "Flame of the Forest") flowers, is introduced. It is a bright yellow pigment belonging to the chalcone class and is examined as a sensitizer for optoelectronic applications. It is observed that chelation of this dye with Ti ions results into a strong dye-TiO(2) charge transfer (DTCT) band in the visible region. This Ti-Isobutrin chelate is stable, irreversible and its formation is studied using Benesi-Hildebrand plot. The locations of HOMO-LUMO states of the Ti-isobutrin chelate and the corresponding band alignment with TiO(2) are obtained. Also, a thermal stability test revealed that isobutrin is stable above 100 °C.


Subject(s)
Butea/chemistry , Chalcones/chemistry , Chelating Agents/chemistry , Electronics
14.
J Nanosci Nanotechnol ; 10(9): 5894-8, 2010 Sep.
Article in English | MEDLINE | ID: mdl-21133123

ABSTRACT

Rutile TiO2 nanoneedle flowers (representing concurrent nano-micro hierarchical morphology) with high shape anisotropy ratio are synthesized at room temperature by using a simple and efficient one step electrochemical process of anodic dissolution. This process employs highly acidic bath of perchloric acid (pH <2) and a large current density on the surface of Titanium foil to form nanostructures. The diameter and length of rutile TiO2 nanoneedle is approximately 8 nm and 100 nm respectively (aspect ratio >10). Dye sensitized solar cell (DSSC) configured using such rutile TiO2 flowers is shown to exhibit IPCE of 30% and power conversion efficiency of approximately 3.6%.

15.
Adv Mater ; 22(29): 3125-55, 2010 Aug 03.
Article in English | MEDLINE | ID: mdl-20535732

ABSTRACT

Over the past decade intensive research efforts have been carried out by researchers around the globe on exploring the effects of dilute doping of magnetic impurities on the physical properties of functional non-magnetic metal oxides such as TiO(2) and ZnO. This effort is aimed at inducing spin functionality (magnetism, spin polarization) and thereby novel magneto-transport and magneto-optic effects in such oxides. After an early excitement and in spite of some very promising results reported in the literature, this field of diluted magnetic semiconducting oxides (DMSO) has continued to be dogged by concerns regarding uniformity of dopant incorporation, the possibilities of secondary ferromagnetic phases, and contamination issues. The rather sensitive dependence of magnetism of the DMSO systems on growth methods and conditions has led to interesting questions regarding the specific role played by defects in the attendant phenomena. Indeed, it has also led to the rapid re-emergence of the field of defect ferromagnetism. Many theoretical studies have contributed to the analysis of diverse experimental observations in this field and in some cases to the predictions of new systems and scenarios. In this review an attempt is made to capture the scope and spirit of this effort highlighting the successes, concerns, and questions.


Subject(s)
Magnetics , Oxides/chemistry , Transition Elements/chemistry , Models, Molecular , Models, Theoretical , Semiconductors
16.
Lab Chip ; 10(15): 1902-6, 2010 Aug 07.
Article in English | MEDLINE | ID: mdl-20532407

ABSTRACT

A novel method is developed for template assisted fabrication of a regular assembly of microcavity arrays. Simple micropatterns on PDMS mold are used to create complex geometries via solvent vapor back pressure in a biodegradable polymer. Cavities are in turn replicated in complimentary PDMS mushroom like microstructures.

17.
J Colloid Interface Sci ; 318(2): 372-9, 2008 Feb 15.
Article in English | MEDLINE | ID: mdl-18061606

ABSTRACT

Here we describe a novel method of preparing hydrophobic silica particles (100-150 nm; water contact angle of dropcasted film ranging from 60 degrees to 168 degrees) by surface functionalization using different alkyltrichlorosilanes. During their preparation, the molecular surface roughness is also concurrently engineered facilitating a change in both the surface chemical composition and the geometrical microstructure to generate hierarchical structures. The water contact angle has been measured on drop-cast film surface. The enhancement in the water contact angle on 3D (curved) SAMs in comparison to that on 2D (planar) surface is discussed using the Cassie-Baxter equation. These silica particles can be utilized for many potential applications including selective adsorbents and catalysts, chromatographic supports and separators in microfluidic devices.


Subject(s)
Membranes, Artificial , Silanes/chemistry , Silicon Dioxide/chemistry , Hydrophobic and Hydrophilic Interactions , Particle Size , Spectroscopy, Fourier Transform Infrared/methods , Surface Properties , Temperature , Thermogravimetry
SELECTION OF CITATIONS
SEARCH DETAIL
...