Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 129, 2023 01 04.
Article in English | MEDLINE | ID: mdl-36599879

ABSTRACT

Observing the structural dynamics of biomolecules is vital to deepening our understanding of biomolecular functions. High-speed (HS) atomic force microscopy (AFM) is a powerful method to measure biomolecular behavior at near physiological conditions. In the AFM, measured image profiles on a molecular surface are distorted by the tip shape through the interactions between the tip and molecule. Once the tip shape is known, AFM images can be approximately deconvolved to reconstruct the surface geometry of the sample molecule. Thus, knowing the correct tip shape is an important issue in the AFM image analysis. The blind tip reconstruction (BTR) method developed by Villarrubia (J Res Natl Inst Stand Technol 102:425, 1997) is an algorithm that estimates tip shape only from AFM images using mathematical morphology operators. While the BTR works perfectly for noise-free AFM images, the algorithm is susceptible to noise. To overcome this issue, we here propose an alternative BTR method, called end-to-end differentiable BTR, based on a modern machine learning approach. In the method, we introduce a loss function including a regularization term to prevent overfitting to noise, and the tip shape is optimized with automatic differentiation and backpropagations developed in deep learning frameworks. Using noisy pseudo-AFM images of myosin V motor domain as test cases, we show that our end-to-end differentiable BTR is robust against noise in AFM images. The method can also detect a double-tip shape and deconvolve doubled molecular images. Finally, application to real HS-AFM data of myosin V walking on an actin filament shows that the method can reconstruct the accurate surface geometry of actomyosin consistent with the structural model. Our method serves as a general post-processing for reconstructing hidden molecular surfaces from any AFM images. Codes are available at https://github.com/matsunagalab/differentiable_BTR .


Subject(s)
Myosin Type V , Microscopy, Atomic Force/methods , Image Processing, Computer-Assisted/methods , Algorithms , Actomyosin
2.
PLoS Comput Biol ; 18(12): e1010384, 2022 12.
Article in English | MEDLINE | ID: mdl-36580448

ABSTRACT

High-speed atomic force microscopy (HS-AFM) is a powerful technique for capturing the time-resolved behavior of biomolecules. However, structural information in HS-AFM images is limited to the surface geometry of a sample molecule. Inferring latent three-dimensional structures from the surface geometry is thus important for getting more insights into conformational dynamics of a target biomolecule. Existing methods for estimating the structures are based on the rigid-body fitting of candidate structures to each frame of HS-AFM images. Here, we extend the existing frame-by-frame rigid-body fitting analysis to multiple frames to exploit orientational correlations of a sample molecule between adjacent frames in HS-AFM data due to the interaction with the stage. In the method, we treat HS-AFM data as time-series data, and they are analyzed with the hidden Markov modeling. Using simulated HS-AFM images of the taste receptor type 1 as a test case, the proposed method shows a more robust estimation of molecular orientations than the frame-by-frame analysis. The method is applicable in integrative modeling of conformational dynamics using HS-AFM data.


Subject(s)
Microscopy, Atomic Force , Microscopy, Atomic Force/methods , Markov Chains
SELECTION OF CITATIONS
SEARCH DETAIL
...