Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
NMR Biomed ; : e5170, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38742727

ABSTRACT

Toll-like receptor 2 (TLR2) belongs to the TLR protein family that plays an important role in the immune and inflammation response system. While TLR2 is predominantly expressed in immune cells, its expression has also been detected in the brain, specifically in microglia and astrocytes. Recent studies indicate that genomic deletion of TLR2 can result in impaired neurobehavioural function. It is currently not clear if the genomic deletion of TLR2 leads to any alterations in the microstructural features of the brain. In the current study, we noninvasively assess microstructural changes in the brain of TLR2-deficient (tlr2-/-) zebrafish using state-of-the art magnetic resonance imaging (MRI) methods at ultrahigh magnetic field strength (17.6 T). A significant increase in cortical thickness and an overall trend towards increased brain volumes were observed in young tlr2-/- zebrafish. An elevated T2 relaxation time and significantly reduced apparent diffusion coefficient (ADC) unveil brain-wide microstructural alterations, potentially indicative of cytotoxic oedema and astrogliosis in the tlr2-/- zebrafish. Multicomponent analysis of the ADC diffusivity signal by the phasor approach shows an increase in the slow ADC component associated with restricted diffusion. Diffusion tensor imaging and diffusion kurtosis imaging analysis revealed diminished diffusivity and enhanced kurtosis in various white matter tracks in tlr2-/- compared with control zebrafish, identifying the microstructural underpinnings associated with compromised white matter integrity and axonal degeneration. Taken together, our findings demonstrate that the genomic deletion of TLR2 results in severe alterations to the microstructural features of the zebrafish brain. This study also highlights the potential of ultrahigh field diffusion MRI techniques in discerning exceptionally fine microstructural details within the small zebrafish brain, offering potential for investigating microstructural changes in zebrafish models of various brain diseases.

2.
EMBO Rep ; 23(5): e52606, 2022 05 04.
Article in English | MEDLINE | ID: mdl-35297148

ABSTRACT

Mitochondrial dysfunction can either extend or decrease Caenorhabditis elegans lifespan, depending on whether transcriptionally regulated responses can elicit durable stress adaptation to otherwise detrimental lesions. Here, we test the hypothesis that enhanced metabolic flexibility is sufficient to circumvent bioenergetic abnormalities associated with the phenotypic threshold effect, thereby transforming short-lived mitochondrial mutants into long-lived ones. We find that CEST-2.2, a carboxylesterase mainly localizes in the intestine, may stimulate the survival of mitochondrial deficient animals. We report that genetic manipulation of cest-2.2 expression has a minor lifespan impact on wild-type nematodes, whereas its overexpression markedly extends the lifespan of complex I-deficient gas-1(fc21) mutants. We profile the transcriptome and lipidome of cest-2.2 overexpressing animals and show that CEST-2.2 stimulates lipid metabolism and fatty acid beta-oxidation, thereby enhancing mitochondrial respiratory capacity through complex II and LET-721/ETFDH, despite the inherited genetic lesion of complex I. Together, our findings unveil a metabolic pathway that, through the tissue-specific mobilization of lipid deposits, may influence the longevity of mitochondrial mutant C. elegans.


Subject(s)
Caenorhabditis elegans Proteins , Longevity , Animals , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Lipid Metabolism/genetics , Longevity/genetics , Mitochondria/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...