Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 18(32): 22276-85, 2016 Aug 10.
Article in English | MEDLINE | ID: mdl-27456283

ABSTRACT

The combustion method was used to prepare a precursor powder of an iron-gallium oxide compound which was further heat-treated in order to obtain a set of Fe1+xGa2-xO4 nanoparticles. All samples have a cubic spinel-type structure (space group Fd3[combining macron]m) and the particle size varies from 1.8 to 28.0 nm depending on the treatment conditions. From the comparative analysis by XRD, EDS, and Raman and Mössbauer spectroscopy the creation of a new spinel phase γ-FeGaO3, which was mainly located on the particle surface, was established. As a result, the composition consists of a FeGa2O4 core covered by a FeGaO3 shell. The relative content of FeGa2O4/FeGaO3 compounds in the composites can be varied by heat treatment. The maximum in the ZFC magnetization curves appeared in all samples at about 20-30 K corresponding to the spin-freezing temperature Tsg, which is much higher than in the bulk compound with a pure inverse spinel structure (Ga)[FeGa]O4. The values of effective Curie temperature ΘC for the Fe1+xGa2-xO4 nanoparticles are rather high and positive, indicating a ferromagnetic interaction between iron ions. The high values of the magnetic frustration parameter f = ΘC/Tsg (up to 7) indicate a high degree of magnetic frustration. The low temperature Mössbauer data reveal the magnetic ordering of Fe ions in all samples with the magnetic transition at about 20-26 K depending on the particle size. The specific features of the Mössbauer parameters indicate the properties of non-homogeneous magnetic systems with frustrated interactions specific to spin-glasses. The magnetic system behaves as a spin-glass below Tsg and it is superparamagnetic above Tsg. Such a system is called a "super-spin-glass". The anisotropy energy Eanis strongly depends on the content of Fe(2+) and Fe(3+) ions which contribute to the magnetocrystalline Ecryst and exchange Eex anisotropies, respectively. The anisotropy energy can be tuned by variation of the content of the (FeGaO3)-(FeGa2O4) phases in these complex composites.

2.
Phys Chem Chem Phys ; 17(24): 15829-36, 2015 Jun 28.
Article in English | MEDLINE | ID: mdl-26018943

ABSTRACT

Single crystalline iron sulfide nanoparticles doped with chromium Fe1-xCrxS (0 ≤x≤ 0.15) have been successfully prepared by a thermal decomposition method. The particles are self-organized into the single crystalline plates with the accurate hexagonal shape and dimensions up to 1 µ in plane and about 30-40 nm in thickness. The samples have the NiAs-type crystal structure (P63/mmc) at all Cr concentrations up to x = 0.15. Fe(57)-Mössbauer spectroscopy data reveal four nonequivalent iron sites in these nanocrystals related to the different number of cation vacancies in neighboring of the iron atoms. A 2C-type superstructure or a mixture of 2C and 3C superstructures of vacancy ordering can appear in these samples. It was established that in the Fe1-xCrxS series chromium prefers to replace iron in the cation layers containing vacancies at 0.00 < x < 0.10 and Cr atoms occupy both iron and vacant sites at x > 0.10. The specific magnetic properties, which can be tuned by chromium doping, enable potential applications of these nanoparticles in technical devices using the material with thermally activated magnetic memory, for example, switches or storages.

SELECTION OF CITATIONS
SEARCH DETAIL
...