Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Radioact ; 198: 117-125, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30605858

ABSTRACT

Weathered micaceous minerals (micas) are able to release potassium ion (K+) and fix caesium-137 (137Cs), both of which reduce soil-to-plant transfer of 137Cs. Among micas, trioctahedral micas such as biotite is expected to have a stronger ability to supply nonexchangeable K+ and a higher amount of Cs fixation sites than dioctahedral micas such as illite. Although biotite is predominant in granitic soils (G soils), illite is mainly dominant in sedimentary rock soils (S soils). Therefore, we hypothesized that G soils have a lower 137Cs transfer risk than S soils because of this difference in mineralogy. The objective of the present study was to determine the transfer factor (TF) of 137Cs and stable Cs (SCs) and to elucidate the determinant factors of TFs for G and S soils in Fukushima, Japan. Pot experiments were carried out with rice (Oryza sativa L. cv. Hokuriku 193) in G and S soils to determine the TF of 137Cs (TF-137Cs) and stable Cs (TF-SCs) under K-deficient conditions. TF-137Cs and TF-SCs were highly correlated, and both were significantly lower for G soils than for S soils. Higher TF values were shown for soils with lower amounts of exchangeable and nonexchangeable K or with higher percentages of exchangeable 137Cs (ex137Cs). The percentage of ex137Cs was negatively correlated with the amount of Cs fixation sites, represented by the radiocaesium interception potential. Thus, we concluded that smaller TF values for G soils were caused by a stronger ability to supply nonexchangeable K+ and a higher amount of Cs fixation sites. These findings will contribute to the establishment of soil screening techniques based on 137Cs transfer risk in Fukushima prefecture.


Subject(s)
Cesium Radioisotopes/analysis , Fukushima Nuclear Accident , Soil Pollutants, Radioactive/analysis , Aluminum Silicates , Ferrous Compounds , Japan , Minerals , Oryza , Plants/chemistry , Radiation Monitoring , Silicon Dioxide , Soil/chemistry , Transfer Factor , Weather
2.
J Environ Qual ; 44(3): 780-8, 2015 May.
Article in English | MEDLINE | ID: mdl-26024258

ABSTRACT

The radiocesium interception potential (RIP) of bulk soil (RIP) can reliably be used to predict the magnitude of soil-to-plant radiocesium transfer. There has been some controversy about which soil properties control the RIP, although the RIP is theoretically proportional to the amount of frayed edge sites in micaceous clay minerals. The RIP was determined for 97 paddy soils in three regions (Hama-dori, Naka-dori, and Aizu) in Fukushima Prefecture, Japan, and the relationships between selected physicochemical properties and the RIP were analyzed. The mean (± standard deviation) of the RIP for the 97 soils was 1.67 (±0.87) mol kg, and the range was 0.34 to 5.36 mol kg. Pearson correlation analysis revealed that the RIP positively correlated best ( < 0.01) with the clay fraction K content as a mass fraction of the bulk soil (clay-K) and negatively correlated with the total C content and the phosphate absorption coefficient ( < 0.05). Therefore, clay-K, an indicator of the amount of micaceous clay minerals in a soil, was confirmed as being useful for estimating the magnitude of the RIP for paddy soils in Fukushima. The RIP was invariably low if either the total C content exceeded 6.0% or the phosphate absorption coefficient exceeded 1500 mg kg, suggesting that these parameters could be useful for screening soils with particularly low RIP values.

3.
Sci Total Environ ; 468-469: 523-9, 2014 Jan 15.
Article in English | MEDLINE | ID: mdl-24055668

ABSTRACT

Relationships between Radiocesium Interception Potential (RIP) and mineralogical characteristics of the clay fraction isolated from 97 paddy soils (Hama-dori, n = 25; Naka-dori, n = 36; Aizu, n = 36) in Fukushima Prefecture, Japan were investigated to clarify the mineralogical factors controlling the (137)Cs retention ability of soils (half-life 30.1 y). Of all the fission products released by the Fukushima accident, (137)Cs is the most important long-term contributor to the environmental contamination. The RIP, a quantitative index of the (137)Cs retention ability, was determined for the soil clays. The composition of clay minerals in the soil clays was estimated from peak areas obtained using X-ray diffraction (XRD) analyses. The predominant clay mineral was smectite in soils from Hama-dori and Aizu, while this was variable for those from Naka-dori. Native K content of the soil clays was found to be an indicator of the amount of micaceous minerals. The average RIP for the 97 soil clays was 7.8 mol kg(-1), and ranged from 2.4 mol kg(-1) to 19.4 mol kg(-1). The RIP was significantly and positively correlated with native K content for each of the geographical regions, Hama-dori (r = 0.76, p < 0.001), Naka-dori (r = 0.43, p < 0.05), and Aizu (r = 0.76, P < 0.001), while it was not related to the relative abundance of smectite. The linear relationship between RIP and native K content not only indicate a large contribution of micaceous minerals to the (137)Cs retention ability of the soil clays, but also could be used to predict the (137)Cs retention ability of soil clays for other paddy fields in Fukushima and other areas.


Subject(s)
Aluminum Silicates/chemistry , Cesium Radioisotopes/chemistry , Soil/chemistry , Adsorption , Clay , Japan
SELECTION OF CITATIONS
SEARCH DETAIL
...