Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 12(10): e0186033, 2017.
Article in English | MEDLINE | ID: mdl-29053717

ABSTRACT

GPR40 agonists are effective antidiabetic agents believed to lower glucose through direct effects on the beta cell to increase glucose stimulated insulin secretion. However, not all GPR40 agonists are the same. Partial agonists lower glucose through direct effects on the pancreas, whereas GPR40 AgoPAMs may incorporate additional therapeutic effects through increases in insulinotrophic incretins secreted by the gut. Here we describe how GPR40 AgoPAMs stimulate both insulin and incretin secretion in vivo over time in diabetic GK rats. We also describe effects of AgoPAMs in vivo to lower glucose and body weight beyond what is seen with partial GPR40 agonists in both the acute and chronic setting. Further comparisons of the glucose lowering profile of AgoPAMs suggest these compounds may possess greater glucose control even in the presence of elevated glucagon secretion, an unexpected feature observed with both acute and chronic treatment with AgoPAMs. Together these studies highlight the complexity of GPR40 pharmacology and the potential additional benefits AgoPAMs may possess above partial agonists for the diabetic patient.


Subject(s)
Glucose/metabolism , Incretins/metabolism , Insulin/metabolism , Receptors, G-Protein-Coupled/agonists , Animals , CHO Cells , Cell Line , Cricetulus , Glucagon/metabolism , Glucose Tolerance Test , Humans , Insulin Secretion , Islets of Langerhans/metabolism , Male , Mice , Rats
2.
Am J Physiol Endocrinol Metab ; 313(1): E37-E47, 2017 07 01.
Article in English | MEDLINE | ID: mdl-28292762

ABSTRACT

G protein-coupled receptor 40 (GPR40) partial agonists lower glucose through the potentiation of glucose-stimulated insulin secretion, which is believed to provide significant glucose lowering without the weight gain or hypoglycemic risk associated with exogenous insulin or glucose-independent insulin secretagogues. The class of small-molecule GPR40 modulators, known as AgoPAMs (agonist also capable of acting as positive allosteric modulators), differentiate from partial agonists, binding to a distinct site and functioning as full agonists to stimulate the secretion of both insulin and glucagon-like peptide-1 (GLP-1). Here we show that GPR40 AgoPAMs significantly increase active GLP-1 levels and reduce acute and chronic food intake and body weight in diet-induced obese (DIO) mice. These effects of AgoPAM treatment on food intake are novel and required both GPR40 and GLP-1 receptor signaling pathways, as demonstrated in GPR40 and GLP-1 receptor-null mice. Furthermore, weight loss associated with GPR40 AgoPAMs was accompanied by a significant reduction in gastric motility in these DIO mice. Chronic treatment with a GPR40 AgoPAM, in combination with a dipeptidyl peptidase IV inhibitor, synergistically decreased food intake and body weight in the mouse. The effect of GPR40 AgoPAMs on GLP-1 secretion was recapitulated in lean, healthy rhesus macaque demonstrating that the putative mechanism mediating weight loss translates to higher species. Together, our data indicate effects of AgoPAMs that go beyond glucose lowering previously observed with GPR40 partial agonist treatment with additional potential for weight loss.


Subject(s)
Appetite Regulation/genetics , Body Weight/genetics , Eating/genetics , Glucagon-Like Peptide 1/metabolism , Receptors, G-Protein-Coupled/metabolism , Weight Loss/physiology , Animals , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Receptors, G-Protein-Coupled/antagonists & inhibitors , Receptors, G-Protein-Coupled/genetics
3.
ACS Med Chem Lett ; 8(1): 49-54, 2017 Jan 12.
Article in English | MEDLINE | ID: mdl-28105274

ABSTRACT

Type 2 diabetes mellitus (T2DM) is an ever increasing worldwide epidemic, and the identification of safe and effective insulin sensitizers, absent of weight gain, has been a long-standing goal of diabetes research. G-protein coupled receptor 120 (GPR120) has recently emerged as a potential therapeutic target for treating T2DM. Natural occurring, and more recently, synthetic agonists have been associated with insulin sensitizing, anti-inflammatory, and fat metabolism effects. Herein we describe the design, synthesis, and evaluation of a novel spirocyclic GPR120 agonist series, which culminated in the discovery of potent and selective agonist 14. Furthermore, compound 14 was evaluated in vivo and demonstrated acute glucose lowering in an oral glucose tolerance test (oGTT), as well as improvements in homeostatic measurement assessment of insulin resistance (HOMA-IR; a surrogate marker for insulin sensitization) and an increase in glucose infusion rate (GIR) during a hyperinsulinemic euglycemic clamp in diet-induced obese (DIO) mice.

4.
J Pharmacol Exp Ther ; 360(3): 466-475, 2017 03.
Article in English | MEDLINE | ID: mdl-28035006

ABSTRACT

Coagulation Factor XII (FXII) plays a critical role in thrombosis. What is unclear is the level of enzyme occupancy of FXIIa that is needed for efficacy and the impact of FXIIa inhibition on cerebral embolism. A selective activated FXII (FXIIa) inhibitor, recombinant human albumin-tagged mutant Infestin-4 (rHA-Mut-inf), was generated to address these questions. rHA-Mut-inf displayed potency comparable to the original wild-type HA-Infestin-4 (human FXIIa inhibition constant = 0.07 and 0.12 nM, respectively), with markedly improved selectivity against Factor Xa (FXa) and plasmin. rHA-Mut-inf binds FXIIa, but not FXII zymogen, and competitively inhibits FXIIa protease activity. Its mode of action is hence akin to typical small-molecule inhibitors. Plasma shift and aPTT studies with rHA-Mut-inf demonstrated that calculated enzyme occupancy for FXIIa in achieving a putative aPTT doubling target in human, nonhuman primate, and rabbit is more than 99.0%. The effects of rHA-Mut-inf in carotid arterial thrombosis and microembolic signal (MES) in middle cerebral artery were assessed simultaneously in rabbits. Dose-dependent inhibition was observed for both arterial thrombosis and MES. The ED50 of thrombus formation was 0.17 mg/kg i.v. rHA-Mut-inf for the integrated blood flow and 0.16 mg/kg for thrombus weight; the ED50 for MES was 0.06 mg/kg. Ex vivo aPTT tracked with efficacy. In summary, our findings demonstrated that very high enzyme occupancy will be required for FXIIa active site inhibitors, highlighting the high potency and exquisite selectivity necessary for achieving efficacy in humans. Our MES studies suggest that targeting FXIIa may offer a promising strategy for stroke prevention associated with thromboembolic events.


Subject(s)
Blood Coagulation , Factor XIIa/antagonists & inhibitors , Insect Proteins/pharmacology , Intracranial Embolism , Intracranial Thrombosis , Recombinant Fusion Proteins/pharmacology , Serum Albumin/pharmacology , Animals , Anticoagulants/pharmacology , Blood Coagulation/drug effects , Blood Coagulation/physiology , Fibrinolytic Agents/pharmacology , Intracranial Embolism/blood , Intracranial Embolism/drug therapy , Intracranial Thrombosis/blood , Intracranial Thrombosis/drug therapy , Models, Animal , Rabbits , Serum Albumin, Human
5.
Antimicrob Agents Chemother ; 56(9): 4662-70, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22710113

ABSTRACT

The resistance of methicillin-resistant Staphylococcus aureus (MRSA) to all ß-lactam classes limits treatment options for serious infections involving this organism. Our goal is to discover new agents that restore the activity of ß-lactams against MRSA, an approach that has led to the discovery of two classes of natural product antibiotics, a cyclic depsipeptide (krisynomycin) and a lipoglycopeptide (actinocarbasin), which potentiate the activity of imipenem against MRSA strain COL. We report here that these imipenem synergists are inhibitors of the bacterial type I signal peptidase SpsB, a serine protease that is required for the secretion of proteins that are exported through the Sec and Tat systems. A synthetic derivative of actinocarbasin, M131, synergized with imipenem both in vitro and in vivo with potent efficacy. The in vitro activity of M131 extends to clinical isolates of MRSA but not to a methicillin-sensitive strain. Synergy is restricted to ß-lactam antibiotics and is not observed with other antibiotic classes. We propose that the SpsB inhibitors synergize with ß-lactams by preventing the signal peptidase-mediated secretion of proteins required for ß-lactam resistance. Combinations of SpsB inhibitors and ß-lactams may expand the utility of these widely prescribed antibiotics to treat MRSA infections, analogous to ß-lactamase inhibitors which restored the utility of this antibiotic class for the treatment of resistant Gram-negative infections.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacterial Proteins/antagonists & inhibitors , Biphenyl Compounds/pharmacology , Depsipeptides/pharmacology , Glycopeptides/pharmacology , Glycosides/pharmacology , Lipopeptides/pharmacology , Membrane Proteins/antagonists & inhibitors , Methicillin-Resistant Staphylococcus aureus/drug effects , Oligopeptides/pharmacology , Staphylococcal Infections/drug therapy , beta-Lactams/pharmacology , Animals , Anti-Bacterial Agents/isolation & purification , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biological Transport , Biphenyl Compounds/chemical synthesis , Depsipeptides/isolation & purification , Drug Synergism , Drug Therapy, Combination , Female , Glycopeptides/chemical synthesis , Glycopeptides/isolation & purification , Glycosides/isolation & purification , Humans , Lipopeptides/isolation & purification , Membrane Proteins/genetics , Membrane Proteins/metabolism , Methicillin-Resistant Staphylococcus aureus/genetics , Methicillin-Resistant Staphylococcus aureus/growth & development , Mice , Mice, Inbred BALB C , Microbial Sensitivity Tests , Multigene Family , Oligopeptides/chemical synthesis , Serine Endopeptidases/genetics , Serine Endopeptidases/metabolism , Staphylococcal Infections/microbiology , beta-Lactam Resistance/drug effects , beta-Lactam Resistance/genetics , beta-Lactamases/genetics , beta-Lactamases/metabolism
6.
Bioorg Med Chem Lett ; 21(14): 4267-70, 2011 Jul 15.
Article in English | MEDLINE | ID: mdl-21676616

ABSTRACT

The bridged monobactam ß-lactamase inhibitor MK-8712 (1) effectively inhibits class C ß-lactamases. Side chain N-alkylated and ring-opened analogs of 1 were prepared and evaluated for combination with imipenem to overcome class C ß-lactamase mediated resistance. Although some analogs were more potent inhibitors of AmpC, none exhibited better synergy with imipenem than 1.


Subject(s)
Anti-Bacterial Agents/chemistry , Enzyme Inhibitors/chemistry , Monobactams/chemical synthesis , beta-Lactamase Inhibitors , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/pharmacology , Binding Sites , Computer Simulation , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Imipenem/pharmacology , Microbial Sensitivity Tests , Monobactams/pharmacology , Protein Structure, Tertiary , Structure-Activity Relationship , beta-Lactamases/metabolism
7.
Bioorg Med Chem Lett ; 21(14): 4363-5, 2011 Jul 15.
Article in English | MEDLINE | ID: mdl-21664132

ABSTRACT

The preparation and characterization of a series of thiophenyl oxime phosphonate beta-lactamase inhibitors is described. A number of these analogs were potent and selective inhibitors of class C beta-lactamases from Pseudomonas aeruginosa and Enterobacter cloacae. Compounds 3b and 7 reduced the MIC of imipenem against an AmpC expressing strain of imipenem-resistant P. aeruginosa. A number of the title compounds retained micromolar potency against the class D OXA-40 beta-lactamase from Acinetobacter baumannii and at high concentrations compound 3b was shown to reduce the MIC of imipenem against a highly imipenem-resistant strain of A. baumanii expressing the OXA-40 beta-lactamase. In mice compound 3b exhibited phamacokinetics similar to imipenem.


Subject(s)
Acinetobacter baumannii/drug effects , Anti-Bacterial Agents/chemistry , Enzyme Inhibitors/chemistry , Organophosphonates/chemistry , Oximes/chemistry , Pseudomonas aeruginosa/drug effects , beta-Lactamase Inhibitors , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Imipenem/pharmacology , Microbial Sensitivity Tests , Organophosphonates/chemical synthesis , Organophosphonates/pharmacology , Oximes/chemical synthesis , Oximes/pharmacology , Thiophenes/chemistry , beta-Lactamases/metabolism
8.
Bioorg Med Chem Lett ; 20(8): 2622-4, 2010 Apr 15.
Article in English | MEDLINE | ID: mdl-20299220

ABSTRACT

4,7-Dichloro-1-benzothien-2-yl sulfonylaminomethyl boronic acid (DSABA, Compound I) was discovered as the first boronic acid-based class D beta-lactamase inhibitor. It exhibited an IC(50) of 5.6 microM against OXA-40. The compound also inhibited class A and C beta-lactamases with sub to low microM IC(50), and synergized with imipenem against Acinetobacter baumannii.


Subject(s)
Anti-Bacterial Agents/pharmacology , Boronic Acids/pharmacology , Enzyme Inhibitors/pharmacology , beta-Lactamase Inhibitors , Acinetobacter baumannii/drug effects , Anti-Bacterial Agents/chemistry , Boronic Acids/chemistry , Enzyme Inhibitors/chemistry , Inhibitory Concentration 50 , Microbial Sensitivity Tests
SELECTION OF CITATIONS
SEARCH DETAIL
...