Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Sci ; 24(10): 1261-7, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18845884

ABSTRACT

The distribution behavior of the salts of a series of 1-alkyl-3-methylimidazolium cations (RMeIm(+); R = butyl, hexyl, and octyl) with tetrafluoroborate (BF(4)(-)), hexafluorophosphate (PF(6)(-)), bis(trifluoromethanesulfonyl)amide (NTf(2)(-)), and 2,4,6-trinitrophenolate (Pic(-)) anions has been investigated in a dichloromethane-water system at 25 degrees C. The distribution constants (K(D)) of the ion pairs and the transfer activity coefficients ((o)gamma(w)) of the single ions were determined. For the ion pairs with a given anion, the log K(D) value increases linearly with the number of methylene groups (N(CH2)) in the cation, which can be explained by using the regular solution theory. A similar relationship was observed between log (o)gamma(w) and N(CH2) for the free RMeIm(+) ions, and the result was discussed by decomposing the transfer activity coefficient into the Born-type electrostatic contribution and the non-electrostatic one. For the free anions and their ion pairs with a given cation, the (o)gamma(w) and K(D) values increase with increasing molar volume of the anion: i.e., BF(4)(-) < PF(6)(-) < Pic(-) < NTf(2)(-). The features of the RMeIm(+) salts in the liquid-liquid distribution and the ion-pair formation in water are also discussed by comparing the present results with those of tetraalkylammonium salts previously reported.

2.
Chemistry ; 12(21): 5618-31, 2006 Jul 17.
Article in English | MEDLINE | ID: mdl-16755621

ABSTRACT

In the presence of a catalytic amount of [Cp*RuCl(cod)] (Cp*=pentamethylcyclopentadienyl, cod=1,5-cyclooctadiene), 1,6-diynes were allowed to react chemo- and regioselectively with nitriles bearing a coordinating group, such as dicyanides or alpha-halonitriles, at ambient temperature to afford bicyclic pyridines. Careful screening of nitrile components revealed that a C[triple chemical bond]C triple bond or heteroatom substituents, such as methoxy and methylthio groups, proved to act as the coordinating groups, whereas C==C or C==O double bonds and amino groups failed to promote cycloaddition. This suggests that coordinating groups with multiple pi-bonds or lone pairs are essential for the nitrile components.


Subject(s)
Alkynes/chemistry , Nitriles/chemistry , Pyridines/chemical synthesis , Catalysis , Organometallic Compounds/chemistry , Ruthenium/chemistry
3.
J Am Chem Soc ; 125(40): 12143-60, 2003 Oct 08.
Article in English | MEDLINE | ID: mdl-14519001

ABSTRACT

In the presence of a catalytic amount of Cp*RuCl(cod), 1,6-diynes chemoselectively reacted with monoalkynes at ambient temperature to afford the desired bicyclic benzene derivatives in good yields. A wide variety of diynes and monoynes containing functional groups such as ester, ketone, nitrile, amine, alcohol, sulfide, etc. can be used for the present ruthenium catalysis. The most significant advantage of this protocol is that the cycloaddition of unsymmetrical 1,6-diynes with one internal alkyne moiety regioselectively gave rise to meta-substituted products with excellent regioselectivity. Completely intramolecular alkyne cyclotrimerization was also accomplished using triyne substrates to obtain tricyclic aromatic compounds fused with 5-7-membered rings. A ruthenabicycle complex relevant to these cyclotrimerizations was synthesized from Cp*RuCl(cod) and a 1,6-diyne possessing phenyl terminal groups, and its structure was unambiguously determined by X-ray analysis. The intermediary of such a ruthenacycle intermediate was further confirmed by its reaction with acetylene, giving rise to the expected cycloadduct. The density functional study on the cyclotrimerization mechanism elucidated that the cyclotrimerization proceeds via oxidative cyclization, producing a ruthenacycle intermediate and subsequent alkyne insertion initiated by the formal [2 + 2] cycloaddition of the resultant ruthenacycle with an alkyne.

SELECTION OF CITATIONS
SEARCH DETAIL
...