Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Invest Ophthalmol Vis Sci ; 57(3): 1441-7, 2016 Mar.
Article in English | MEDLINE | ID: mdl-27028065

ABSTRACT

PURPOSE: Digoxin, a major medication for heart disease, was recently reported to have immunosuppressive capacity. Here, we determined the immunosuppressive capacity of digoxin on the development of experimental autoimmune uveitis (EAU) and on related immune responses. METHODS: The B10.A mice were immunized with interphotoreceptor retinoid-binding protein (IRBP) and were treated daily with digoxin or vehicle control. On postimmunization day 14, the mouse eyes were examined histologically, while spleen cells were tested for cytokine production in response to IRBP and purified protein derivative. The immunosuppressive activity of digoxin was also tested in vitro, by its capacity to inhibit development of Th1 or Th17 cells. To investigate the degenerative effect of digoxin on the retina, naïve (FVB/N × B10.BR)F1 mice were similarly treated with digoxin and tested histologically and by ERG. RESULTS: Treatment with digoxin inhibited the development of EAU, as well as the cellular response to IRBP. Unexpectedly, treatment with digoxin suppressed the production of interferon-γ to a larger extent than the production of interleukin 17. Importantly, digoxin treatment induced severe retinal degeneration, determined by histologic analysis with thinning across all layers of the retina. Digoxin treatment also induced dose-dependent vision loss monitored by ERG on naïve mice without induction of EAU. CONCLUSIONS: Treatment of mice with digoxin inhibited the development of EAU and cellular immune response to IRBP. However, the treatment induced severe damage to the retina. Thus, the use of digoxin in humans should be avoided due to its toxicity to the retina.


Subject(s)
Diabetes Mellitus, Type 1 , Digoxin/pharmacology , Immunity, Cellular/drug effects , Retinal Degeneration/prevention & control , Uveitis/drug therapy , Animals , Disease Models, Animal , Enzyme Inhibitors/pharmacology , Female , Mice , Retinal Degeneration/etiology , Retinal Degeneration/immunology , Severity of Illness Index , Uveitis/complications , Uveitis/immunology
2.
PLoS One ; 10(6): e0128906, 2015.
Article in English | MEDLINE | ID: mdl-26067490

ABSTRACT

BACKGROUND: Mutations in LRRK2 are related to certain forms of Parkinson's disease and, possibly, to the pathogenesis of Crohn's disease. In both these diseases inflammatory processes participate in the pathogenic process. LRRK2 is expressed in lymphoid cells and, interestingly, Lrrk2 (-/-) mice were reported to develop more severe experimental colitis than their wild type (WT) controls. Here, we examined the possible involvement of LRRK2 in the pathogenesis of experimental autoimmune uveitis (EAU), an animal model for human uveitis, by testing Lrrk2 (-/-) mice for their capacity to develop this experimental eye disease and related immune responses. METHODS: Lrrk2 (-/-) mice and their WT controls (C57Bl/6) were immunized with interphotoreceptor retinoid-binding protein (IRBP) and compared for their development of EAU, delayed type hypersensitivity (DTH) by skin tests, production of cytokines in culture, and expression of interferon (IFN)-γ, interleukin (IL)-17 and FoxP3 by spleen cells, using flow cytometry. Peritoneal macrophages were examined for their production of cytokines/chemokines in culture following stimulation with LPS or the oligodeoxynucleotide CpG. The Lrrk2 (-/-) and WT mice were also compared for their response to bovine serum albumin (BSA). RESULTS: The Lrrk2 (-/-) mice developed lower levels of EAU, DTH responses and cytokine production by lymphocytes than did their WT controls. Intracellular expression of IFN-γ and IL-17, by spleen cells, and secretion of cytokines/chemokines by activated peritoneal macrophages of Lrrk2 (-/-) mice trended toward diminished levels, although variabilities were noted. The expression levels of FoxP3 by Lrrk2 (-/-) spleen cells, however, were similar to those seen in WT controls. Consistent with their low response to IRBP, Lrrk2 (-/-) mice responded to BSA less vigorously than their WT controls. CONCLUSIONS: Lrrk2 deficiency in mice diminished the development of EAU and the related adaptive immune responses to IRBP as compared to the WT controls.


Subject(s)
Autoimmune Diseases/pathology , Protein Serine-Threonine Kinases/genetics , Uveitis/pathology , Adaptive Immunity , Animals , Autoimmune Diseases/metabolism , Chemokines/metabolism , Disease Models, Animal , Eye Proteins/immunology , Forkhead Transcription Factors/metabolism , Hypersensitivity, Delayed/etiology , Hypersensitivity, Delayed/immunology , Interferon-gamma/metabolism , Interleukin-17/metabolism , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2 , Macrophages, Peritoneal/immunology , Macrophages, Peritoneal/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Protein Serine-Threonine Kinases/deficiency , Retinol-Binding Proteins/immunology , Skin Tests , Th1 Cells/cytology , Th1 Cells/immunology , Th1 Cells/metabolism , Th17 Cells/cytology , Th17 Cells/immunology , Th17 Cells/metabolism , Uveitis/metabolism
3.
Invest Ophthalmol Vis Sci ; 56(3): 1658-64, 2015 Feb 12.
Article in English | MEDLINE | ID: mdl-25678688

ABSTRACT

PURPOSE: The inflammatory process plays a major role in the pathogenesis of AMD, and recent data indicate the involvement of inflammasomes. Inflammasomes are intracellular structures that trigger inflammation by producing mature interleukin-(IL)-1ß and IL-18. This study examined the capacity of 7-ketocholesterol (7KCh), an oxysterol that accumulates in the retinal pigmented epithelium (RPE) and choroid, to initiate inflammasome formation in RPE and bone marrow-derived cells. METHODS: Tested cells included fetal human RPE (fhRPE), human ARPE-19 cells, primary human brain microglia cells, and human THP-1 monocyte cells. 7-Ketocholesterol and other compounds were added to the cell cultures, and their stimulatory effects were determined by quantitative PCR and release of cytokines, measured by ELISA and Western blotting. RESULTS: 7-Ketocholesterol efficiently induced inflammasome formation by all primed cell populations, but secreted cytokine levels were higher in cultures of bone marrow-derived cells (microglia and THP-1 cells) than in RPE cultures. Interestingly, inflammasomes formed in cells of the two populations differed strikingly in their preferential production of the two cytokines. Thus, whereas bone marrow-derived cells produced levels of IL-1ß that were higher than those of IL-18, the opposite was found with RPE cells, which secreted higher levels of IL-18. Importantly, Western blot analysis showed that IL-18, but not IL-1ß, was expressed constitutively by RPE cells. CONCLUSIONS: 7-Ketocholesterol efficiently stimulates inflammasome formation and is conceivably involved in the pathogenesis of AMD. In contrast to bone marrow-derived cells, RPE cells produced higher levels of IL-18 than IL-1ß. Further, IL-18, a multifunctional cytokine, was expressed constitutively by RPE cells. These observations provide new information about stimuli and cells and their products assumed to be involved in the pathogenesis of AMD.


Subject(s)
Bone Marrow Cells/drug effects , Bone Marrow Cells/physiology , Inflammasomes/drug effects , Inflammasomes/physiology , Interleukin-18/metabolism , Interleukin-1beta/metabolism , Ketocholesterols/pharmacology , Retinal Pigment Epithelium/drug effects , Retinal Pigment Epithelium/physiology , Blotting, Western , Cells, Cultured , Enzyme-Linked Immunosorbent Assay , Humans
4.
Invest Ophthalmol Vis Sci ; 54(12): 7463-9, 2013 Nov 13.
Article in English | MEDLINE | ID: mdl-24150760

ABSTRACT

PURPOSE: Ligands for aryl hydrocarbon receptor (AHR), such as dioxins, are highly toxic. One such ligand, TCDD, was found to exert potent immunosuppressive capacities in mice developing pathogenic autoimmune processes, including EAU, but its toxicity makes it unusable for humans. A recently identified endogenous AHR ligand, ITE, is also immunosuppressive, but is nontoxic and could therefore be useful for therapy in humans. Here, we tested ITE for its capacity to inhibit EAU and related immune responses. METHODS: EAU was induced in B10.A mice by immunization with interphotoreceptor retinoid-binding protein (IRBP; 40 µg) in CFA. Treatment with ITE was by daily intraperitoneal injection of 0.2 mg. Disease severity was assessed by both fundoscopy and histological examination. Draining lymph node cells were tested for proliferation by thymidine uptake and for cytokine production and release by ELISA. In addition, the intracellular expression of cytokines and Foxp3 was determined by flow cytometry. Serum antibodies were measured by ELISA. RESULTS: Treatment with ITE efficiently inhibited the development of EAU in mice, as well as the cellular immune responses against IRBP and PPD. ITE treatment inhibited the expansion of both Th1 and Th17 subpopulations, as well as their release of the signature cytokines, IFN-gamma and IL-17. The treatment moderately increased, however, the proportion of Foxp3 expressing T-regulatory cells. Antibody production was not affected by the treatment. CONCLUSIONS: ITE, an endogenous AHR ligand, efficiently inhibits EAU development and related cellular immune responses. Being nontoxic, ITE may be considered for treatment of pathogenic immunity in humans.


Subject(s)
Autoimmune Diseases/prevention & control , Eye Proteins/metabolism , Immunity, Cellular/immunology , Retinol-Binding Proteins/metabolism , Uveitis/prevention & control , Animals , Autoimmune Diseases/immunology , Autoimmune Diseases/pathology , Cell Differentiation/immunology , Cytokines/immunology , Cytokines/metabolism , Disease Models, Animal , Enzyme-Linked Immunosorbent Assay , Eye Proteins/immunology , Female , Flow Cytometry , Mice , Retinol-Binding Proteins/immunology , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/pathology , Uveitis/immunology , Uveitis/pathology
5.
Biol Open ; 2(10): 1013-21, 2013.
Article in English | MEDLINE | ID: mdl-24167711

ABSTRACT

Fetal alcohol spectrum disorder (FASD) occurs when pregnant mothers consume alcohol, causing embryonic ethanol exposure and characteristic birth defects that include craniofacial, neural and cardiac defects. Gastrulation is a particularly sensitive developmental stage for teratogen exposure, and zebrafish is an outstanding model to study gastrulation and FASD. Epiboly (spreading blastomere cells over the yolk cell), prechordal plate migration and convergence/extension cell movements are sensitive to early ethanol exposure. Here, experiments are presented that characterize mechanisms of ethanol toxicity on epiboly and gastrulation. Epiboly mechanisms include blastomere radial intercalation cell movements and yolk cell microtubule cytoskeleton pulling the embryo to the vegetal pole. Both of these processes were disrupted by ethanol exposure. Ethanol effects on cell migration also indicated that cell adhesion was affected, which was confirmed by cell aggregation assays. E-cadherin cell adhesion molecule expression was not affected by ethanol exposure, but E-cadherin distribution, which controls epiboly and gastrulation, was changed. E-cadherin was redistributed into cytoplasmic aggregates in blastomeres and dramatically redistributed in the extraembryonic yolk cell. Gene expression microarray analysis was used to identify potential causative factors for early development defects, and expression of the cell adhesion molecule protocadherin-18a (pcdh18a), which controls epiboly, was significantly reduced in ethanol exposed embryos. Injecting pcdh18a synthetic mRNA in ethanol treated embryos partially rescued epiboly cell movements, including enveloping layer cell shape changes. Together, data show that epiboly and gastrulation defects induced by ethanol are multifactorial, and include yolk cell (extraembryonic tissue) microtubule cytoskeleton disruption and blastomere adhesion defects, in part caused by reduced pcdh18a expression.

SELECTION OF CITATIONS
SEARCH DETAIL
...